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ABSTRACT. For the root systems of type B, C; and D;, we generalize the result
of [7] by showing the existence of Frobenius manifold structures on the orbit
spaces of the extended affine Weyl groups that correspond to any vertex of the
Dynkin diagram instead of a particular choice made in [7]. It also depends
on certain additional data. We also construct LG superpotentials for these

Frobenius manifold structures.
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1. INTRODUCTION

Let R be an irreducible reduced root system defined in an [-dimensional Eu-
clidean space V' with the Euclidean inner product (, ). We fix a basis of simple
roots aq, ..., a; and denote by oz]V, j=1,2,--- 1 the corresponding coroots. The

Weyl group W is generated by the reflections

x—=x—(a),x)a;, VxeV, j=1,..,1 (1.1)

Recall that the Cartan matriz of the root system has integer entries A;; = (ozi, oz}/)

satisfying A;; = 2, A;; < 0 for @« # j. The semi-direct product of W by the
lattice of coroots yields the affine Weyl group W, that acts on V by the affine

transformations

I
X — w(x) + ija;, weW, m; €Z. (1.2)

i=1

We denote by wi, ..., w; the fundamental weights defined by the relations
((A)Z',Oé;-/) :52‘]', Z,j = 1,...,[. (13)

Note that the root system R is one of the type A;, By, C}, Dy, Eg, E7, By, Fy, Gs.
In what follows the Euclidean space V' and the basis a4, . . ., o; of the simple roots
will be defined as in Plate I-IX of [2]. Let us fix a simple root oy and define an

extension of the affine Weyl group W, in a similar way as it is done in [7].

Definition 1.1. The extended affine Weyl group W = W(k)(R) acts on the ex-

tended space

V=VaR,

it 1s generated by the transformations
!
r=(X,2141) — (w(x) + Zm]a}/, T41), weW, m; €L, (1.4)
j=1

and

T = (X, 211) = (X + 7wk, T — 7). (1.5)
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Here 1 <k <, v =1 except for the cases when R = B;,k =1 and R= F;,k =3

or k =4, in these three cases v = 2.

The above definition of the extended affine Weyl group coincides with the one
given in [7] for the particular choice of oy that is made there. We note that in
the cases for which v = 1 the number %(ak, ay,) are integers, while for the three

1

i _ 1
exceptional cases (g, ax) = 3.

Let us introduce coordinates xy, ..., x; on the space V' by
X =z + -+ moy. (1.6)

Denote by f = det(A;;) the determinant of the Cartan matrix of the root system
R.

Definition 1.2 ([7]). A = A®(R) is the ring of all W-invariant Fourier poly-

nomials of the form

§ 2mi(mim1+ - +my T+ my 1)
amlv---ymlJrle !

mi,...,m1€7Z

bounded in the limit

x =x" —iwgT, Ty =ah, +iT, T — 400 (1.7)

0

for any z% = (x° 2, ).

We introduce a set of numbers

and define the following Fourier polynomials [7]

gi(x) = e hmy;(x), j=1,....1, (1.9)
Jii(z) =7 (1.10)
Here y1(x), ...,y (x) are the basic W,-invariant Fourier polynomials defined by

1 - : .
yj(x) _ n_ Z 627r7,(wj,w(x))’ n; = #{w e W|e2m(wj,w(x)) _ 627r7,(wj,x)}‘ (111)
T wew
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It was shown in [7] that for some particular choices of the simple root «y, a
Chevalley-type theorem holds true for the ring A, i.e., it is isomorphic to the
polynomial ring generated by #,..., 7,11, and thus the orbit space defined as
M = Spec A of the extended affine Weyl group W is an affine algebraic variety of
dimension [+1. In [7] it was further proved that on such an orbit space there exists
a Frobenius manifold structure whose potential is a polynomial of ¢*, . .., ¢+ et
Here ¢!, ..., #!! are the flat coordinates of the Frobenius manifold. For the root
system of type A;, there is in fact no restrictions on the choice of ay. However,
for the root systems of type B, Cy, D, Eg, E7, Eg, Fy, G5 there is only one choice
for each.

In [18] Slodowy pointed out that the Chevalley-type theorem of [7] is a con-
sequence of the results of Looijenga and Wirthmiiller [13| 14 20], and in fact it

holds true for any choice of the base element «y, or equivalently, for any fixed

vertex of the Dynkin diagram. So we have

Theorem 1.3 ([I8, 20} 13| 04]). The ring A is isomorphic to the ring of polyno-
mials of g1(x), -+, Y1 ().

A natural question, as it was pointed out in [7], 1], is whether the geometric
structures that were revealed in [T also exist on the orbit spaces of the extended
affine Weyl groups for an arbitrary choice of the root oy, ? The purpose of the
present paper is to give an affirmative answer to this question for the root systems
of type B, C; and also for D;. It will be organized as follows.

In Sec2l we give an elementary proof of Theorem that is based on the proof
of the Chevalley type theorem given in [7].

Let M be the orbit space of the extended affine Weyl group W(k)(Cl) and M
a covering of M \ {11 = 0}. In SecBl firstly we introduce an indefinite metric
(,) onV =V ®R given by

~

~ 1
(dl’s,dxlﬂ) =0, (dIz+1,d$z+1)

= Akn?

(dxs, dz,)” (1.12)

= An2

for 1 < s <n <. The projection



induces the following symmetric bilinear form on 7% M:

I+1 ; ;
i ay* oy’ . . ~
gj(y> = al’a@(dl’ 7d$b) ) (113>
a,b=1

where y' = §1,...,y" = 71, v = log 111 = 2mizy, . Afterwards, on certain open

subset U of M we construct a flat pencil of metrics ¢”(y) and 1 (y), where

N (y) = Leg” (y) (1.14)

and the vector field e has the form

ezzcji. (1.15)

j=k
It depends on the choice of an integer m in the range 0 < m < [ — k. Namely,
for a given m the coefficients ¢, --- , ¢ are defined by the generating function

Zgzk cjut™ = (u + 2)™(u — 2)'"7F=™_ Furthermore, we show that

Main Theorem 1. (Theorem For any fized integer 0 < m < | — k, there
exists a unique Frobenius manifold structure, denoted by My..(C)), of charge
d = 1 living on the covering of the orbit space M \ {t:™™ = 0} U {t! = 0}
of W®(Cy) polynomial in t*, - 1+, tlém’ tl—l,etl+1 for a suitable choice of flat
coordinates t', - -+ |t for the metric (LI4) (see Theorem [T 10 below) such that

!
. . , 0 0
(1) The unity vector field e coincides with ]E:k cj@ = o

(2) The Euler vector field has the form

l
~ 0 1 0
E = S T 1.1

;dat ata+katl+1’ (1.16)

where dy, . .., d; are defined in (363)-(3.69).

(3) The invariant flat metric and the intersection form of the Frobenius man-
ifold structure coincide respectively with the metric (n”(t)) and (g”(t)) on
the covering of M\ {t=™ =0} U {t! = 0}.

In SecH] we further show that for the root systems of type B; and D; we can

apply a similar construction as the one for the root system of type C;. The
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resulting Frobenius manifolds are isomorphic to those obtained from the root
system of type C.

Observe that in the case of the root system of type A;, in [7] it is shown
that the extended affine Weyl group W(k)(Al) describes monodromy of roots of

trigonometric polynomials with a given bidegree being of the form
M) = e*? + ar Ve 4 gl De g £,

A natural question is whether there exists a similar construction for the root
systems of type By, C; and D;? In Secll let us denote by My, the space of
a particular class of cosine Laurent series of one variable with a given tri-degree

(2k,2m, 2n) being of the form

k+m-+n

M) = (cos®(9) =1) 7" D ajeos™™ ™ (p), agarimin # 0,
j=0

where all a; € C, m,n € Z>o, and k € N. The space My, , carries a natural
structure of Frobenius manifold. Its invariant inner product n and the intersection
form ¢ of two vectors d', 0" tangent to My ., at a point A(p) can be defined by

the following formulae

77(8/’8//) _ (_1>k+1 Z dl;\e:SO a/()\(QO)dj)?(a;)()\(QO)d(p)’ (117>
[A|<oo
and
90,7 ==Y res 9 (log A(s@iﬁii”( (;(;g Alp)dyp) (1.18)

[A|<oo

Moreover, we will show that

Main Theorem 2. (Theorem[5.8) There is an isomorphism of Frobenius man-

ifolds between My . and Mp m(Crimn)-

A function involved in the representation of the form (LIT), (LIS) of the flat
pencil of metrics on the Frobenius manifold is called Landau—Ginzburg (LG) su-

perpotential of the Frobenius manifold. Observe that the multiplication law on
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the tangent spaces to the Frobenius manifold can also be expressed in terms of
the LG superpotential (see eq. (BH) below).

Some concluding remarks are given in the last section.

2. A PROOF OF THEOREM RELATED TO THE ROOT SYSTEMS OF TYPE
Bl7 Cl7 Dl

In this section, we give an elementary proof of the Theorem for the root
systems of type B;,C; and D; for any fixed vertex of the Dynkin diagram. To
this end, we first write down the explicit expressions of the invariant Fourier
polynomials g;(x) that are defined in (L9), (II0) for these root systems with the
fixed simple root ay, hereafter aq, ..., a; denote the standard base of simple roots
as given in [2]. We then prove the theorem by using an approach that is similar
to the one used in [7].

For the root system of type B;, the numbers d; defined in (L) have the values
di=1i, 1<i<k, dij=k k+1<75<I1-1, dl:§, (2.1)

for k <l and

di:

%,19‘3[—1, dy, = ~ (2.2)

4
for k = 1. The W,-invariant Fourier polynomials y;(x), ..., y(x) defined in (I.IT])

have the expressions [12]

yj(x):O-j(gla"' >€l)> j:17"'7l_17 (23)
l
y(x) = H (emvj + e—mvj) : (2.4)
j=1

where

v = Ty, VUm = Ty — Tm—1, 2§m§l—1,
v = 21’1 — L1, (25)

gj — e2i7rvj _‘_e—2i7rvj’ 1 S ] S l
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Here and henceforth the functions o;(&1, ..., &) denote the j-th elementary sym-

metric polynomial of &, - -+ & defined by

l

H(ng) = o0&, &) (2.6)

J=0

For the root system of type Cj, the numbers d; are given by
dlzl,...,dk_lzk—l, dj:]{?, /{:S]Sl (27)

The W,-invariant Fourier polynomials y;(x), ..., y;(x) defined in (LIT]) have the

expressions
yj(x) = 0;(&, -, &) (2.8)

Here &; are defined by
& = e2im@imein) 4 pm2im (@m0 =, 1< 5 <L

For the root system of type D;, we have

i)
di=j, 1<j<k, di=k k+1<j<[-2, (2.9)
k
4= i=1-11 (2.10)

for £ <1—2;and

ii)
j , [ [ -2
dj:§7 1< <1—-2, dl_1217 dl:T (211>
for k=1—1;and
iii)
j , [—2 l
dj=§,1§J§l—27 dl—l—Tv dl:Z (2.12)
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for k = 1. The basis of the W,-invariant Fourier polynomials defined in (L.IT])

has the form

y](X):O'J( 1" 7£l)7 .j:lv"’al_27

l l

1 .

yi-1(x) = 3 (H et e “””) + H (e“”’f e “”’J)> , (2.13)

j=1 j=1

l
1 LTV —imv IV, —imv;

yl(X)I§<]:H1 J+€ J)_g(e I —e J))7

where

v = Ty, VUm = Ty — Tm—1, 2§m§l—2,
V1 =T+ T — X, U= Ty — @, (2.14)

gj — e2i7rvj _‘_e—2i7rvj’ 1 S ] S l

Proof of the Theorem for the root system R = By, Cy, D;. From the explicit
expressions of the Fourier polynomials g1 (), ..., ,41(x), it is not difficult to see
that they are W(k)(R)—invariant. So in order to prove the theorem, we only need
to show that any element f(x) of the ring A can be expressed as a polynomial
of g1(x),...,J41(x). By using the fact that the ring of W,-invariant Fourier
polynomials is isomorphic to the polynomial ring generated by y;(x), ..., y(X)

and by using the W-invariance of the function f(x) € A, we can represent it as a

polynomial of §i(z), ..., 5(x), Jir1(x), § . Assume

Z yl+1 n )a"'agl(z))a

n>—N

and the polynomial P_y(71(z),...,7(z)) does not vanish identically for certain

positive integer V. From the definition of the functions g;(z) we know that in the
limit (7)) we have

yi(x) = TN + O ™), j=1,..1, (2.15)
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where « is a certain positive integer and the expressions of the functions y?(xo)

will be given below. So in the limit (7)) the function f(z) behaves as

fw) = e TN Py (G(0), L 50) + O]

for a certain positive integer § and

G (2%) = & bt 0(x0), =1,

Since the function f(z) is bounded for 7 — 400, we must have

Py (i(2°),..., 5 (a") =0

for any 2° = (x°, 2, ;). This leads to a contradiction to the algebraic independence
of the functions 3¢,

,7° that we will now prove case by case for the root systems
of the type B;,C; and D;.

i) For the root system of type B, with 1 < k <1 —1,

y?(xo):ph jzla"'>k>

yS(XO):pkpm 8:k+17"'7l_17

0

Y (XO) = /PPl
where the functions p; are defined by
p; = aj(e%iv‘f’ e 7627”'712)7 j=1,---,k,
ps =0 i(Eprr &), s=k+1-0 1
with

0 . 0 0 0
j j xj—h 2§j§l_17 Ul :2xl_xl—1‘

0_ .0 0_ .0
v, =T, U =0T

Thus we obtain

0/0 1—k
det (ay,. x )) S — (2.16)
Ip; 2\/PkpI



When k = [, we have

y]Q(XO) = pj = Oj (627”11)(1)’ o 7627riU?)

y?(xo) = \/E7 pr = O-l(€27riv(1)7 e 7627”;1)?)7
90 (x"
Ip;

ii) For the root system of type Cj,

Y

y?(x(]):p]v jzla"'vkv

yS(X(]):pkpS, S:k+17...7l’

where the functions p; are defined by

;0
2mivy

py = (e e

ps:US—k(§]g+1>"'a§lO)> S:k+1a"'>l

with

521 _ 627riv?n + e—27riv9n’

v =ay, v, =, =2, m=2,
Thus we get .

iii) For the root system of type D; with k <[ — 2,

?/JO'(XO):P]" jzla"'>k>

yS(XO):pkpsu S:k+17"'7l_27

1 1
y?_1(xo) = —\/P_k(Pl +pi-1) yzO(XO) = 5\/@(Pl — pi-1)

2

where the functions p; are given by

2rivf 2miv? .
p]:o'](e 1,"‘,6 k)’ ]:1’...’]{:’

) .]:17

j:1>"'al_1a

7k7

ps:O-s—k(glg-i-lf"aglo)a S:k+1a"'>l_2>

l l

P} P} 1] ;a0
pl_1 = H <ez7rvj + e—mrvj) . o= H <€7,7rvj _ e—urvj)

s=k+1 s=k+1

11

(2.17)

(2.18)
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with

0 0, .0 0 0_ 0 0
Vi1 =% + T —Tj_g, U =T —T;.

Thus we know

det (ayéig)) — %(pk)l_k_l. (2.19)

iv) For the case D; with k =1 — 1 we have

y?n(xo):pma m:1>"'al_2>

0 0 0/.,0 Pr—1
11X = ) Yy X =
Y (x) VPl p(x7) N

where the functions p; are defined by

o 2709 2miv? _

pj_aj(e 1)"'76 l)a ]_19 al

with
0 .0 _ .0 0

V] =27, Uy =Ty — Tpygs, 2<Sm < —2,

0 _ .0 0 0 0_ .0 0

Uy =T T T — L9, V) =T — Ty
So we have

0y0(x0)) 1
det [ ———% ) = ——. 2.20
‘ ( Ip; 2p; (2.20)

v) For the case D; with k = [ the functions y(x°) and p; are defined in the same

way as we did in the above case iv) except

Pl—1
ylo—l(xo) = ) ?/zo(xo) =, Uzo =T — 55?—1-

3|

and we have

8y-0(x0)) 1
det - = —. 2.21
‘ ( Ip; 2p; ( )

From the above calculation of the Jacobian det (%ﬁ) and from the algebraic
independence of the functions py,..., p; we deduce the algebraic independence of

the functions y{(x°), - -,y (x°). This completes the proof of the theorem. O
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3. FROBENIUS MANIFOLD STRUCTURES ON THE ORBIT SPACE OF W®)(())

3.1. Flat pencils of metrics on the orbit space of W®) (). Let M be the
orbit space defined as SpecA of the extended affine Weyl group W(k)(C’l) for any
fixed 1 < k < [. As in [7] we define an indefinite metric (, )~ on V=VaR
such that V is the orthogonal direct sum of V' and R. Here V' is endowed with

the W-invariant Euclidean metric

(dz, dzn)™ = ﬁ 1<s<n<l (3.1)

and R is endowed with the metric

~ 1
d d = — :
(dwiy1, dxig) Ak 72

(3.2)

The set of generators for the ring A = A®(C)) are defined by (IL9), (LI0), [23)
with v = 1. They form a system of global coordinates on M. We now introduce

a system of local coordinates on M as follows

y' =01,y =G, YT =log i = 2mi 2. (3.3)

They live on a covering M of M \ {f+1 = 0}. The projection

P:‘7—>./T/l/ (3.4)

induces a symmetric bilinear form on 7% M

+1 ayZ ay]
i3\ — dj ,: Y a3 b\
(dy',dy’) = g"(y): 2 Gy &Cb(dx ,dx”) (3.5)
Denote
¥ = {y| det(g”(y)) = 0}, (3.6)

then it was shown in [7] that ¥ is the P-image of the hyperplanes
{(x,21:1)|(8,x) =r € Z, x4, = arbitrary}, [€ @7, (2.3)

where @7 is the set of all positive roots.
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Proposition 3.1. The functions g (y) and the contravariant components of its

Levi-Civita connection

I+1
To(y) ==Y ¢"W.(), 1<ijn<i+1 (3.7)
s=1
are weighted homogeneous polynomials in y', - - -, ', eV of the degree
deg g (y) = degy' + degy’, (3.8)
deg '/ (y) = degy’ + degy’ — degy” (3.9)

where degy? = d; and degy™' = dj, = 0.

- ot i
Proof. The proposition follows from ' (y)dy™ = 8?;1” 8:)3qu7’ (dz?, dz?)~dz" and
Theorem [1.3] O

From this Proposition we see that ¥ is an algebraic subvariety in M and the
matrix (¢g%/) is invertible on M\ ¥, the inverse matrix (¢”)~! defines a flat metric
on M\ 2. We now proceed to look for other flat metrics on a certain subvariety
in M that are compatible with the metric (¢)~!. To this end, let us introduce

the following new coordinates on M:

T ji=0
= it o1 k1 (3.10)
yj? j - k? ?l
and denote
i = Qﬂi(l’j — Ij_l), Hi+1 = yl+1 = 27Ti.flfl+1, j = 1, s ,l. (311)
In the coordinates piq, ..., f41 the indefinite metric on V has the form
N . 1
((dpi, dpy)”) = diag(—1,. ..,—1,2). (3.12)
Define

l

P(u) := Z ul e = et T + €)). (3.13)

j=1
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We can easily verify that the function P(u) satisfies
OP(u) 1

M u+ gaPW)(e““ —e ), 1<a<i; (3.14)
OP(u) b 8P _
T kP(u), P'(u):= 2 — ga (3.15)

Lemma 3.2. The following formulae hold true for the generating functions of the
metric (¢g¥) and the contravariant components of its Levi-Civita connection ij n
the coordinates 6°, ..., 0":

l

D (a6, dY) " u' = = (dP(w), dP(v))”

1,j=0

A gy pey —

u—v u—v

= (k—)P(u)P(v) +

P(u)P'(v), (3.16)

l N I+1 )
> = 3 2
,5,r=0 a,b,r=1

24 24
Y P w)dP(v) — 2
— v

g (dpta, d
aua (’Mbé‘ur fir(dita, dpty)

= (k- )P(w)dP(v) + P(u)dP'(v)

U —v
uv — 4 uy — 4

+ (u— o) (v)dP(u) — w0y

P(u)dP(v). (3.17)
I+1

Here TY(0) = — > g™ (0)I")

Proof. By using (8.14) and (3.13]), we have

10P(u
k 8,ul+1 8,ul+1

—~
\_/

(dP(u),dP(v))” =

a=1

— u)P(v & —
> pwr ’<u+§a><v+5a>

= (k= DPu)P(v) + — —

So we proved the first formula, the second formula can be proved in the same way.

The lemma is proved. O
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The above lemma shows that in the coordinates 6°,. .., 6" the functions g% (f)
are quadratic polynomials, and the contravariant components I'/ are homogeneous
linear functiond]. To find flat metrics that are compatible with this quadratic

metric g*/ (), we need the following lemma.

Lemma 3.3. If there is a set of constants {cy,...,c;} such that

(i) the functions

G0 + o\, 0 + e, 0+ ),
D900 + o), 0 + cih, .., 0 + )

are linear in the parameter \ for 1 <1i,j,s <Il+1, and

(i) the matriz (n) with
L9
n’ =Le.g”, e -EZO %565 (3.18)

is nondegenerate on certain open subset U of M.

Then the metrics (g), (") form a flat pencil, i.e., the linear combination (g% +
A yields a flat metric on U for any X satisfying det(g” + An") # 0, and the
contravariant components of the Levi-Civita connection for this metric equal

I 4+ X~ (3.19)
Here v are the contravariant components of the Levi-Civita connection for the

metric (n) which can be evaluated by ¥ = LT,

Proof.  For the proof of this lemma, see Appendix D of [6]. O

IThese metrics give rise to a quadratic Poisson structure on the space of “loops” {S* — M}

(see [5] for the details):
{0"(a),07(b)} = g7 (0(a))8' (a — b) + T (6(a))035(a — b).

We plan to study such important class of quadratic metrics and Poisson structures in a separate

publication.
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Theorem 3.4. For any fixed integer 0 < m < | — k there is a flat pencil of
metrics (g7), (n") on a certain open subset U of M with (g*) given by (F3) and
n = L.g". Here the vector field e has the form

l l
0 0
e = ZC]‘% :cha—yj’ (320)
ji=k =k
where the constants ¢y, - -+, ¢; are defined by the generating function
!

Po(u) =Y cjul™ = (u+2)"(u—2)7Fm. (3.21)

j=k

Euxplicitly, ¢; = (—2)77F Z(—l)m_s <m) <l —k- m) forj =k - L

—~ S l—j—s
Proof. Firstly we want to find the constants ¢y, . .., ¢; satisfying the condition (7)

l
in Lemma B3l It suffices to find a polynomial Py(u) = Z cju'™7 such that after
j=0

the shift
P(u) = P(u) + \Py(u), P(v)— P(v)+ AFPy(v),

the right hand side of ([B.16) and ([BI7) are linear in A. This yields that Py(u)
and Py(v) must satisfy

u?—4 v2—4
Py(u)Po(v) —

u—v u—v

(k —1)Po(u)Py(v) +

Py(u)P(v) = 0. (3.22)

Separating the variables and integrating one obtains

A =a (12 T2+ 2)F = -9

for some constants a, b. This is a polynomial iff m := l_Tk — b is a non-negative
integer. Hence any polynomial solution to eq. ([3.22)) must have the form FPy(u) =
a(u+2)™(u—2)""%"™ for an integer where 0 < m < [—k. Thus, up to a common

factor the constants ¢y, ..., ¢ are determined by
!
> el = (u+ 2w =2
=0

Actually, by comparing the degrees of u, we know ¢; =0 for 7 =0,--- ,k — 1.
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Next we want to check the condition (i) in Lemma B3 In order to do this,
taking any fixed integer 0 < m <[ — k we consider the following linear change of

coordinates

defined by the relations 7! = ¢+ and

- Y P (w+2) (w2 (3.23)

j=l-m+1
where
leJrl’ ] — 0’
@l = piek=T i k-1, (3.24)
7, J=k,-- 1
Then,

l

Z;lj—u+2)( lkm Zc]

7=0

Q)

This means that in terms of the new coordinates 7° the vector field e defined in

(B:20) has the expression

007

0 0 _ 9
7+ 063

Qj\

Furthermore, observe that the left hand side of (8:23) coincides with the polyno-
mial P(u), by substituting the expressions of P(u), P(v) given by the right hand
side of (3:23)) and a careful analysis, the matrix (¥ (7)) with entries

(1) = Leg” (7) (3.25)



has the block form

Py
Wi :
Py
PPy B
0
0
1
where W; are triangular blocks
0 0 0
0 0 0
Wi=10 0 0
k R Rs

Ql QZ Ql—k—m

0

| @m |
: : : 0
Qip-m 0 - 0

with entries

0
Wy

0 1
0 O
Ws 0
0 O

R; =4(k—j+ 1)Tj_1€7—l+1 + (k — )7,

Py=4(k—j+ 1) te”

Qs = 4T + (1 — Osi—k—m)(s + 1)rhrstt

S, = 4prlmtr

1<j<k 1<r<m,

A simple computation gives

det(nij) — (—1)lk‘k_14l_kmm(l — k= m)l_k_m(Tl_m)l_k_m(’Tl) )

+1
)

1<s<][—k—m.

—4(1 = &y )AL

m

19

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)
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So the metric (7% (7)) does not degenerate on M\ {7 € M|r! = 0,77 = 0}. We
complete the proof of this theorem. O

Remark 3.5. (1). The block Wy or W3 does not appears in the matriz (3.26)
when m =1 —Fk orm = 0. (2). The flat pencil of metrics that corresponds to a
fixed integer m is equivalent to the one that corresponds to the integer | — k —m,
this is due to the fact that under replacement u — —u the polynomial Py(u) =

(u+2)™(u—2)""%"™ is transformed to the polynomial (—1)" % (u+2)=F"m(u—2)™.

Corollary 3.6. In the coordinates 7', ..., 7' the components g” (1), T' (1) of the
metric (33) and its Levi-Civita connection are weighted homogeneous polynomials

of the degrees

deg g’ =d; +d;, degl?(7)=d;+d; — ds. (3.31)

They are at most linear in T".

3.2. Flat coordinates of the metric (/). In this subsection, we will show

that the flat coordinates of the metric () defined in the last subsection are

I+1

algebraic functions of 71, ..., 71 ¢™ "' To this end, we first perform changes of

coordinates to simplify the matrix (7% (7)).

Lemma 3.7. There exists a system of coordinates z*, ..., 2'T" of the form
2 :Tj—l—pj(Tl,...,Tj_l,eTlH), 1<j <k, (3.32)
l—m
zj:Tj+ZC§TS, k+1<j5<l—k-—m, (3.33)
s=j+1
I
=74 > BT, l—k-m+1<j<l, (3.34)
s=j+1
S

where ¢ and hl are some constants and p; are homogeneous polynomials of degree

d; such that in the new coordinates z* the components of the metric (n”) can
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still been encoded into a block diagonal matriz of the form (328)-(328) with the

entries replaced by

R;j=0, Pj=0, Q,=4sz"" S, =drz'=m"" (3.35)

1<j<k 1<s<l—k—-m, 1<r<m.
Proof. Let us first note that the (k + 1) x (k + 1) matrix (57%) which has entries
il =l (r), g = g =5, 1<, <k 1<m<k+1  (3.36)

coincides, under renaming of the label of coordinate 77+ +— 7%+ with the matrix
(7)) (k+1)x (k+1) that is constructed as in the last subsection with respect to the
extended affine Weyl group W(k)(Ck). Thus by using the results of [7] we can find
homogeneous polynomials p;, 1 < 7 < k such that under the change of coordinates
B32) and 27 = 77, k+1 < j < [+1 the matrix (p”(2)) has the form (3.26)(3:28)
with entries

Rj =0, PJ = 07 Qs = 432k+8 + (1 - 5s,l—k—s)(s + 1)Zk+8+1>

Sy = 4rz2 T — 4(1 — 6y )2t

1<j<k, 1<r<m, 1<s<l—k-—m.

To finish the proof of the lemma, we need to perform a second change of coor-

dinates. To this end, denote by ¥ an n X n matrix with entries as linear functions

of al,... a"

P (a) = 4(i+j —1)a™ 7 k(i )™, i 5>, (3.37)
k(i,j)=i+3j, or —4(i+j—1). (3.38)

Here a® = 0 for s > n+1. We are to find a linear transformation of the triangular

form .
o => B, Bl=1 j>1 (3.39)
such that . ] o
Z 4(r+s— l)b”s‘l%% =" (a). (3.40)

r,s=1
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Equivalently, the constants B; must satisfy the relations

Ai+j— )BT + k(i j)BY =4y > BLBI,

a+pB=y+1
1+7 <v<n. (3.41)
Introduce the generating functions
Fiy=>Y Bt i=12... (3.42)

a>0
Then the relations in ([8.41]) can be encoded into the following equations:

4(i 4 — D)2l (g, )T = 4% (FHLF Y. (3.43)

When k(i,7) =i+ 7 and k(i,j) = —4(i +j — 1), this system of equations has the

following solution respectively

sinh (2)\
fi(t) = cosh <§) # , (3.44)

and
21

fit) = (%) : (3.45)

From the above result we know the existence of constants ¢/ and h’ such that

under the change of coordinates

s i=1,.. . k141,
l—m
e Y der k+1<j<l-m,
s=j+1
l
2 2+ Z hgzs, l—m+1<j <,
s=j+1

the matrix (n*(z)) has the form (B.26)-(B.28) and with entries given by (3.35).

The lemma is proved. O
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Lemma 3.8. Under the change of coordinates

w=2 i=1,...k [+1, (3.46)
wk-i-l — Zk-i—l(zl—m)—m’ (347)
wszzs(zl_m)_%, s=k+2,---,l—m-—1, (3.48)
W = ()T, (3.49)
wmt = Zl—m—i—l(zl)—ﬁ’ (3.50)
w’":z’"(zl)_wzfl, r=l—-m+2,---,1—1, (3.51)
wl = (zl)21n’ (352)
the components of the metric (n”(z)) are transformed to the form
A0 0 0 O
00 0 0 1
00 B 0 0|, (3.53)
00 0 By 0
01 0 0 0
where the matriz A = Ag,_1)xx—1) has entries A = ik—ik and the upper trian-
gular matrices By and Bs have the form
0 0 0 0 0 2
0 Hpiz Hpp H_po1 H_p
0 H H H,_ .,
B, = %H k'+5 l (3.54)
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and
0 0 0 o -~ 0 2
0 Himys Hipya -+ H H
0 H_mys Hipos -+ H
Bo=| ' ! | +4 11 | +5 l (3.55)
0 H,
2
with
Hyps = ds(w'™™) 2wk, H_, = 4(1 —m — k)(w™™) 7,
Hyoppsy = 4j(w!) 20" Hy = dm(w') ", (3.56)
3<s<l—-m—-k—1, 3<7<m-—1.
Proof. By a straightforward calculation. O

Remark 3.9. When m =1 —k, the matriz By does not appear in (353), i.e., the
matriz given in (3.53) has the form

A0 0 0
00 0 1
00 B, 0|
01 0 0

In this case we use the formulae ([340), (340)-(352) for the change of coordi-
nates. When m =1 —k — 1, we have By = 1, and we use the formulae (340,

(349)-(353) to define the new coordinates. When m =1 — k — 2, the matriz B,

has the form . We understand the above lemma in a similar way as we
2 0

did for the cases when m = 0,1, 2.
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Theorem 3.10. We can choose the flat coordinates of the metric (n"(w)) in the

form

th = wl, . ,tk = wk, = wl+1,

tk—i—l — ,wk—i-l + wl—m th(sz, o ’,wl—m—l)’

th=wm(w! + byt wm) k2 < <l-m—1,

tl—m — wl—m

tl—m—i—l — ,wl—m—i-l + ,wl hl_m+1(wl_m+2, o ’,wl—l)’

t5 = wh(w® + ho(w, .. w™)), [ —m+2<s<1—1,

th = w'.
Here hy_y—1 = hi—1 = 0, h; are weighted homogeneous polynomials of degree
% forg=k+1,....,1—m—2 and h, are weighted homogeneous polynomials
of degree k(l ) fors=1—m+2,...,1—1. The degrees of the coordinates w' are

defined in a natuml way through the degrees of y' given in (2.7).

Proof.  From the block diagonal form ([Z53) of the matrix (n”(w)) and the
definition (B54)-(B356) of its entries, we know that the flat coordinates can be

chosen to have the form

t=w', 1<i<k, i=1+1, (3.57)
th =t (™), k1< i<l-m (3.58)
=t W), —m4+1<s <L (3.59)

Since the matrices By and Bs have the same form, and B; becomes constant when
m =1—korm=1[—k—1, we only need to consider the flat coordinates (8.58]) for
the metric that corresponds to the matrix By defined in (8.54]) with m <1—k—3.

The functions # = #/(wk*1 ... w!™™) must satisfy the following system of

PDEs
I+1

8w“8wb Z%bﬁwc_o’ ab=k+1,... [-m (3.60)
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Introduce the (I —m — k) x (I —m — k) matrix

d=(¢)), ¢i=-—r, 1<i,j<Il—m—k,

J C Qwkti’

Then the system (B.60) can be written in the form

0,0 = PA,, 0, = s=k+1,...,1—m, (3.61)

0
ows’
where the entries of the coefficient matrices A, are rational functions of w**!, ... w!=™.
It follows from the simple expressions of the entries of the matrix B; that the
systems ([B.6I) are regular at w =(w**! ... w!=™) = 0 except for case when

s =1 —m, in this case the coefficient matrix has the form

1 1

A, = diag(0, i wl_m,O).
Note for all the cases with m =k +1,...,l —m — 1 the entries of the matrices
A, are weighted homogeneous polynomials of w**!, ... w!=™.

Now we put ® in the form
d = Wdiag(1,w'™™, ..., w"™™ 1),
then the systems in (B.61]) are converted to
oV=UB,, O¥=0, s=k+1,....0—m—1.

The entries of the coefficient matrices By are now weighted homogeneous poly-
nomials of w*! ... w!™™, thus we can find a unique solution ¥ of the above

systems such that it is analytic at w = 0 and
V|, =diag(1,...,1).

From the weighted homogeneity of the coefficient matrices By it follows that the
elements of ¥ are also weighted homogeneous. Since degw’ > 0 for j = k +

—m

1,...,1l —m we know that they are in fact polynomials of w**! ... w!™™, and

thus the results of the theorem follow. The theorem is proved. O
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Due to the above construction, we can associate the following natural degrees

to the flat coordinates

d; = degt! = % 1<j <k, (3.62)
~ 20 —2m —2s + 1
ds = degt’® := , k+1<s<[l—m, 3.63
€8 2 —m—h) Thsssimm (3.63)
~ 20 — 2 1
d =degte =220 il <ac<l, (3.64)
2m
~ 1
diyr = deg =0, dege! = o (3.65)
and we readily have the following corollary.
Corollary 3.11. In the flat coordinates t',... t'T', the nonzero entries of the
matriz (0 (t)) are given by
(
k. = ki, 1<i<k-1,
1, i—l41,j—k ori—k j=1+1,
i Al—m—k), j=l-m+k—i+1, k+2<i<l—-m-—1,
’)7 =
2, i=1l—-m,j=k+1 orit=k+1, 5=10—m,
4m, J=2l—m-—1+1, [—m+2<:<[—1,
2, i=lLj=l—-m+1 ort=l—m+1, j=1.

(3.66)
The entries of the matriz (¢”(t)) and the Christoffel symbols T4 (t) are weighted

1 . .
homogeneous polynomials of t*, ... 1, o et of degrees d; +d; and d;+d; —
d,, respectively. In particular,

~ 1
s, 14+1 dsts, 1<s< l, I+1,1+1 -,
g o =o=h K (3.67)
Fj+17Z:dj5i7j, 1 SZ,] Sl—}—]_
The numbers dl, e ,CZZH satisfy a duality relation that is similar to that of

[7]. To describe this duality relation, let us delete the k-th vertex of the Dynkin
diagram R. We then obtain two components R \ a, = Ry U R,. For any given
integer 0 < m <[ —k, we denote Ry = Ro; URqg, where Ro; = {agi1, -+ ,a4-m}

and Roo = {_ms1,- -+, }. On each component we have an involution i + i*
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given by the reflection with respect to the center of the component. Define
E*=1+1, (+1)" =k, (3.68)

then we have
di+dp =1, i=1,...,1+1, (3.69)

and from the above corollary we see that 7% is a nonzero constant iff j = i*.

3.3. Frobenius manifold structures on the orbit space of W(k)(Cl). Now
we are ready to describe the Frobenius manifold structures on the orbit space
of the extended affine Weyl group W(k)(Cl). Let us first recall the definition of

Frobenius manifold, see [6] for details.

Definition 3.12. A Frobenius algebra is a pair (A, < , >) where A is a commu-
tative associative algebra with a unity e over a field K (in our case K = C) and

<, > 1s a KC-bilinear symmetric nondegenerate invariant form on A, i.e.,

<x-y,z>=<uwz,y-z> VaxyzeA

Definition 3.13. A Frobenius structure of charge d on an n-dimensional manifold
M is a structure of Frobenius algebra on the tangent spaces T,M = (A, <, >y)
depending (smoothly, analytically etc.) on the point t. This structure satisfies the
following axioms:

FM1. The metric <, >; on M is flat, and the unity vector field e is covariantly
constant, i.e., Ve = 0. Here we denote V the Levi-Civita connection for
this flat metric.

FM2. Let ¢ be the 3-tensor c(x,y,z) =< x-y,z >, x,y, 2 € T,M. Then the
4-tensor (V,o)(x,y, 2) is symmetric in x, y, z, w € TyM.

FM3. The existence on M of a vector field E, called the Euler vector field, which
satisfies the conditions VVE =0 and

E<zy>—-<[Ez,y>—<uz|Ey >=2-d) <z,y>

for any vector fields x,y on M.
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A manifold M equipped with a Frobenius structure on it is called a Frobenius

manifold.

Let us choose local flat coordinates t', - --t" for the invariant flat metric, then
locally there exists a function F(t!,--- t"), called the potential of the Frobenius

manifold, such that

. PF
<u-v,w >=uvw ———— 3.70
Otioti Ots (3.70)
for any three vector fields u = ui%, v = %, w = ws%. Here and in what

follows summations over repeated indices are assumed. By definition, we can also

choose the coordinates t' such that e = a%’ Then in the flat coordinates the

o 0

components of of the flat metric < 57, 5% > can be expressed in the form

PF
=y, d,j=1,...,n. 3.71
ototior 1 Y " (38.71)
The associativity of the Frobenius algebras is equivalent to the following overde-

termined system of equations for the function F

3 3 3 3
'0 F M or = 0 F M 0 F (3.72)
Ot Otiotr ' OtrOtkot™  OtFOtIotr T Ot ot Ot™
for arbitrary indices i, 7, k, m from 1 to n.
In the flat coordinates the Euler vector field £ has the form
E = i(&iti + ri)i (3.73)
— ot

for some constants CZZ', r;, © = 1,...,n which satisfy dy = 1,71 = 0. From the axiom

FM3, it follows that the potential F' satisfies the quasi-homogeneity condition
LpF = (3 —d)F + quadratic polynomial in t. (3.74)

The system B.71)—(B3.74) is called the W DV'V equations of associativity which is
equivalent to the above definition of Frobenius manifold in the chosen system of
local coordinates.

Let us also recall an important geometrical structure on a Frobenius manifold

M, the intersection form of M. This is a symmetric bilinear form ( , )* on T*M
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defined by the formula

(w1, w)* = ip(wy - w2), (3.75)
here the product of two 1-forms wq, wy at a point t € M is defined by using the
algebra structure on T, M and the isomorphism

T,M — T M (3.76)

established by the invariant flat metric < , >. In the flat coordinates t!,--- ,¢"

of the invariant metric, the intersection form can be represented by

(dt',dt’)" = LgFY = (d =1 +d; +d;) FV, (3.77)
where
S F
Fi = g pid’ = ~ 3.78
T St ot (3.78)

and F(t) is the potential of the Frobenius manifold. Denote by 3 C M the
discriminant of M on which the intersection form degenerates, then an important
property of the intersection form is that on M \ ¥ its inverse defines a new flat

metric.

Theorem 3.14. For any fized integer 0 < m < [ —k, there exists a unique Frobe-

nius manifold structure of charge d = 1 living on the covering of the orbit space

—~ 1 1
M\ At =0} U {t! = 0} of WW(C)) polynomial in t', -- -, t+1, e et
such that
S99
(1) The unity vector field e coincides with ; cj@ = o
(2) The Euler vector field has the form
I
-, 0 1 0
E=) dot">o+ 20 (3.79)
a=1

where dy, . .., d; are defined in (3563)-(5.69).

(3) The invariant flat metric and the intersection form of the Frobenius man-
ifold structure coincide respectively with the metric (n¥(t)) and (¢“(t)) on
the covering of M\ {t'™™ =0} U {t! = 0}.
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Proof. By following the lines of the proof of Lemma 2.6 given in [7] we can show

the existence of a unique weighted homogeneous polynomial

1 1 4
o 1 k—1 k+1 ! t
G—G(t,,t ,t ,...,t,ﬁ,y,€ )
of degree 2 such that the function
Lok, 1o i1j
F =S ()t + ot > it +G (3.80)
ij2k
satisfies the equations
g9 =LpFY, T =d;c¢? i jm=1,...1+1, (3.81)
where ¢ = %f—f. Obviously, the function F' satisfies the equations
PF .
m:’fh’j, Z,jzl,...,l+1 (382)
and the quasi-homogeneity condition
LpF =2F. (3.83)

From the properties of a flat pencil of metrics [6] it follows that F' also satisfies

the associativity equations
et = b e (3.84)

for any set of fixed indices 7, j, p, g. Now the theorem follows from above properties

of the function F' and the simple identity Lge = —e. The theorem is proved. O

Remark 3.15. [t follows from Remark that the Frobenius manifold struc-
tures which correspond to the integers m and | — k — m are equivalent. From
the above construction we see that the potential F' is in general a polynomial of

1 1 tl+1

——, —,e" ", in the particular cases when m =1 and m =1—k — 1

1 I+1
ta-'-at ’tl_m’tl’

it does not depend on tll and tl%l respectively. When k =1 the Frobenius manifold

structure coincides with the one that is constructed in [7].
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3.4. Examples. To end up this section we give some examples to illustrate the

above construction of Frobenius manifold structures. For brevity, instead of

th, ..., t"! we will denote the flat coordinates of the metric 0¥ by ti,... ¢4,
and we will also denote 9; = a% in the the following examples.

Example 3.16. [C5, k = 1] Let R be the root system of type Cs, take k = 1, then
dlzdgzdgzl, and

Yyl =" (G + b+ &),
y? = e (G6 + L16s + 68s)
y? = e?TIE 68,

yt = 241 x4,

where &; = 2™ @i=2i-1) 4 =2 (@ =2i-1) gnd 3y =0, j = 1,2,3. The metric (, )"

has the form

1 1 1 0
N 1 1 2 2 0

((dzi, dry) ) = —5
4m 1 2 3 0
0 0 0 —1

_ ; — 9 _ 40 9
Case I. m =0, i.e., e = 3y 4ay2 +48y3'

We first introduce the variables

A=yl +6er, 2=y 4yl + 126,
D=yt 42y + 4yt +8eY, 2=yt
Then the flat coordinates are given by

1
t =2 —2e" ty = (2% — 5 23 (%)~

N
~
w
Il
—~
I
w
N—
IS
~
Ny
Il
N
W



and the intersection form has the expression

1
gll =2 t2t3 €t4 + g t34€t4 +4 €2t4,

7 7 5t
g =t + e, g =ty gM =1,

3 2 2
g =12t5%" — itﬁ + 1—12t33t2 - 11@1536 + i Z—i
g23 :2t1+4€t4 - %t2t3+%t34_iz_zv

The potential has the form

1 1 1 1
F = — 1%t + — t1tots — — to’ts> tots® — t
g 11ttt g hibals = g hatlsm + T tats” — 088
1 1 1 ty3
ttt4 _t4t4 = 2t e
+totse +636 +2e +48t3

and the Euler vector field is given by
3 1
E = tlal ‘l‘ 115202 ‘l‘ itgag + 04.

1 _ 9 0
Case II. m =1, i.e., e = 57 4a_y3'

vt
Define

1 1
d=yiH2e =gyt gy g b 2e
1 1
d=y gyt -2 2=yt

Then the flat coordinates are

t1221—26Z4, to = V22, t3 =V23, ty=2"

8
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and the intersection form is given by

gt = 2t,%e! — 2t5%eM 4 4%,

912 = 3t26t4a 913 = _3t36t4a 914 = tla

1 1
g2 =26 4t — —t32 — S ty%, g% = —=tyts,

4 4 2
P =—2e" +t; — itﬁ — itgz,
9" = %tz, g = %tg, gt =1.
The potential has the expression
F = %tltf + % tits® + %tﬁ ty — 4—18 to?
—% tyt — %t22t32 + b7 — ty?e + % e

and the Euler vector field is given by

1 1
E - tlal + §t282 + §t383 + 84.

The Frobenius manifold structure that we obtain for this case is isomorphic to the

one given in Example 2.6 [As, k = 2] of [1].

Example 3.17. [C5, k = 2] Let R be the root system of type Cs, take k = 2, then

dlzl,d2:d3:2, and

Yyl =" (G + 6+ E),
y* =T (6 + Gibs + 6a6s) |
y3 = 62iﬂw4§1§2§37

yt = 2401 x4,
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where & = 2™ @572i-1) 4 =2 (@=2-1) and x5 =0, j = 1,2,3. The metric (, )"

has the form

1 1 1 0
N 1 1 2 2 0

((dx;, dx;) ) 5
4 1 2 3 0
0 0 0 -1

Case I. m =0, i.e., e = 8%2 — 28%3. The Frobenius manifold structure that we

obtain for this case is isomorphic to the one given in Example 2.7 [Bs, k = 2] of

.
Case II. m =1, i.e., e = 8%2 +28%3.

We first introduce the following variables

A=yl + 2694, 22 =y —1—46294,

23 =29% —4yle® —y3—|—86294, 2=yt

Then the flat coordinates given by
th=2' —4e” ty =22 22" 46627, ty =V, by =2
The potential has the expression

1 1 1 1
F = Ztots® 4+ = t1%y + = to2ty — — t3*
5 1213 +412+224 1R

1 1 1
~56 b+ b — el ot Pe 4 et

and the Euler vector field is given by
1 1 1
2 e 2 27

This Frobenius manifold structure is exactly the one given in Example 2.7 [Bs, k =

2] of M.
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Example 3.18. [Cy,k = 1,m = 0] Let R be the root system of type Cy, take
]{7:1, thend1:d2:d3:d4:1, and

Y= (G + o+ &+ &),
=T Y G,

1<a<b<4

y3 _ 62 T Xy Z gaé-bgc’

1<a<b<c<4

Yt = 2T 68y,

y® = 2im s,

where & = €21 (@i—wi-1) 4 e=2im(i—wi-1) gnd vy = 0, j = 1,2,3,4. The metric

(, )" has the form

Introduce the variables
A=yt 48e”, 2 =y2 46yt + 24",
D=yt 4y + 12y +32e0, 25 =P,

A=yt 28 48y + 497 + 167,

and
1 1 1
wlzzl—Qezs, wgz(zz—ézs—l—%z‘l)(z‘l) 5,
3 14 4\—2 4\ 1 5
ws = (2 _ZZ)(Z) 5, wy = (27)6, ws = 2°.

Then we have the expression of the flat coordinates

1

2
— 1o Ws Wa l3 = w3wy, T4 = wy, ts = ws.

b1 = wq, ta = wo
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The potential F' is given by

1 1 1
F = —t%ts + = tytoty — ta? 33,2
5 1ls T ghibls = gaots F g ta e

_ L totats® — t5t3% + 1 tits® + !
288 34560 24 1440

b to2t,% — t,ty + ! t, 0ty — ty
48 60480 345600 7603200

taty s

12

1 s, 2 1, 3 I 6 ¢ 1 o
et 4 = Pty 4+ —— 5,0+ totgel 4 = 25
+12€ 3—|—6€ 3ly _'_]_206 4 T totye +2€

1 t5ty? 1 tots3 1 t5°

24 t, 216 t2 @ 4320 t,°

with the Euler vector field

D 1 1
E — t181 + 6t282 + §t383 + 6t484 + 85.

Example 3.19. [Cy,k = 2,m = 0] Let R be the root system of type Cy, take
k’:2, thendl = 1,d2:d3:d4:2, and

Y= (G + o+ &+ &),
y=et Y GG,

1<a<b<4

y3 = ¢times Z gagbgca

1<a<b<c<4

yt = et 6EsE,,

y® = 24T x5,
where &; are defined as in the last example. The metric (, )~ has the form

1 1 1 1 0

o
o
o
o

|

N[
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Introduce the following variables
2=yl + Seys, 20 =P,
2 =2 +6y'ed + 24,
2= 4y 412 yley5 + 32 62y5,
A=yt 2P 44y + 8yley5 + 16 €22,

Then the flat coordinates are given by

5 5 5
t =2t —4e® | ty = 22 — 22t 4+ 6%,

ISk

t3 = (2° — —24)(z4)_%, ty = (M1, t5 = 2°.

The Euler vector field and the potential are given respectively by

1 3 1 1
E = —t,0) +t90y + —t305 + —t,04 + =0s.
211+22+433+444+25

1 1 1 1 1
F = = to%ts + — t1 2ty + — tatst 12ty — — 1,252

225+412+2432+144043 4843

1 1 1 1 2
_ t8__t4+_ 2t5t2+_t5tt4+_t42t5
36288 4 g6 L ¢ T it mgtae
+e"ty st +tt62t5+164t5+i£

134 344 4 48 t4'

In the following, we present two more examples and omit all computations and

only list the potentials and the Euler vector fields.

Example 3.20. [C5,k = 1,m = 2] Let R be the root system of type Cs, take
k=1,m =2, then

1 1 1 1 1
F = Ztgt;?+ = titots + — t1tats — — ta3*ts* — = totstyt
5 el +2123+2145 w5 3l g lallals
1 1 1 1 1
— 8 — 18 — — 3% — — %5 + — t5 ot
92687 36288 g3 r T gtals T optstals

+it Yuts + 3Pty + im 4 totgel® — tytselt
96 % " T 1440 360 *° 3 b

2 1 1 1 ty3 1 3
__t4t6 _t4t6 - 2t _i _i
gl gty T R T
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The Euler vector field is given by
E=1t0,+ §t282 + 115383 + §15484 + 115585 + 0.
4 4 4 4
Example 3.21. [Cs,k = 1,m = 2] Let R be the root system of type Cg, take

k=1, then

1 1 1 1 1

F= 5 t %t + o tits? + 3 titoty + 3 titsts — = tot,2
1 1 1 1
+17280 t3ts® — 5 ts2ts? + 350 tsts® + 55 t32te?
17 1 1 1
5760 fo'ts" - 60480 ta'ts — 72 fo' a7t 288 tats"ts
1 1 1 1
—— totatst — — 3%t — —— 1S — 1,552
Taa0 2P T gg T8 sT6 T 55680 T 3560 4 1B
1 1 1 1
— tat — 12+ — tottoty — —— tat,Ot
6012 ® 7603200 4 T gqle t2la T gggtela s
1 1 1 1
+ 15600 t,0t; — S tototats + % totatsts + 5 t,3tsel
1 1 2
—t6t7 tot t7_tt tr _t2t7__t4t7
‘|‘12046 +246 5lg€ +1236 366
+1 2t 1 t%ts 1 tats? 1 #3515

2 T Ty 206 62 T3040 192 4
and the Euler vector field is given by

) 1 1 3 1
E = tlal ‘l‘ atgag + §t383 + 6t404 ‘l‘ Zt505 ‘l‘ Ztﬁ&(j + 07.

4. ON THE FROBENIUS MANIFOLD STRUCTURES RELATED TO THE ROOT

SYSTEM OF TYPE B; AND D,

For the root system R of type B, we also define an indefinite metric (, )~ on
V =V @R such that V is the orthogonal direct sum of V' and R. V is endowed

with the W-invariant Euclidean metric

~ 1 1 l
(dxs,dz,) = 4—7r2[(1 — 55%1)8 ~ 1 Onilst), 1<s<n<l (4.1)

and R is endowed with the metric

~ 1

=——. 4.2
47T2dk ( )

(dl'l+1> dl’l+1)



40

Here the numbers dj, are defined in (2.1]) and (2.2)). The basis of the W,-invariant
Fourier polynomials y(x), ..., y-1(x), y(x) are defined in ([Z3))-(235). The gen-
erators of the ring W®(B)) have the same form as that of ([9) and (CI0). It
is easy to see that the components of the resulting metric (¢”(y)) coincide with
those corresponding to the root system of type C; if we perform the change of

coordinates
Yy =y vy =) T eyt =yt =10 -1 (4.3)
for1<k<[—1and

S ) ) 1 ‘
Yy =y ey =) Yyt eyt = §yl“, j=1,...,0—1 (44)

for the case when k& = [. Thus, the Frobenius manifold structure that we obtain in
this way from B;, by fixing the k-th vertex of the corresponding Dynkin diagram,
is isomorphic to the one that we obtain from C) by choosing the k-th vertex of
the Dynkin diagram of .

For the root system R of type D;, the indefinite metric (, )~ on V=Va&Ris

defined through the W-invariant Euclidean metric

S

= 1<s<n<[-2
(dxs, dx,,), oot <s<n<l-2,
N s
(dzs, dxy,) et 1<s<l—-2,n=101—-1,1-2,
(dxy_1,dryy)” = (day, dz;)” = / (d d)”——l_2
Li-1,aQT1—1) = \ax, ax;) = 1672 Li-1,a4T1) = 1672’
and
~ 1
(dxl-i-l)dxl-i-l) :—M-

Here the numbers dj are defined in (2.9]). The set of generators for the ring
A = A®(D)) have the same form as that of (LJ) and (LI0), where y;(x) are
defined in (2.I3)) and (2.I4]). It can be verified that the components of the resulting
metric (¢”(y)) coincide with those corresponding to the root system of type Cj if
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we perform the change of coordinates

yngj:yja jzla"'al_2> l+1>

-k
yl—l — gl—l _ yl—lyl . Z[l . (_1)3] 25—2yl—s
s=2
-k
=3l (1] 2
=0
-k
Yy =) )= ) () 2y
s=2
-k
_ [1+ (=1 2l—j—1yje(k—j)yl“_
=0

Thus, the Frobenius manifold structure that we obtain in this way from D, by
fixing the k-th vertex of the corresponding Dynkin diagram, is isomorphic to the
one that we obtain from Cj by choosing the k-th vertex of the Dynkin diagram of
C.

5. LG SUPERPOTENTIALS FOR THE FROBENIUS MANIFOLDS OF
M (Cp)-TYPE

We consider a particular class of cosine-Laurent series of one variable with a

given tri-degree (2k,2m, 2n), which is a function of the for

k+m+n
)‘(30) = (COS2(()0) - 1>_m Z a; COS2(k+m_j)((p)a AoAk+m+n 7& O> (51)

5=0
where all a; € C, m,n € Z>y and k € N. The cosine is considered as an an-

alytic function on the cylinder ¢ ~ ¢ + 27, so cos?(¢) has four critical points

n o 3m

e =0,3,m 5. We denote by My ., the space of this kind of cosine Laurent

2When k = 1 and m = n = 0, this reduces to A\(¢) = a; + ag cos? (). If we set

1+ cos(2¢)

to to
2 ’ a0:_4677 a1 :t1+2eT7 p:2907

cos? ()
then the LG superpotential is rewritten as

Ap)=t1 — %7 cos(p),

which is exactly the LG superpotential of the CP'-model obtained in Example I.1 [6].
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series. By analogy with the construction in [6, [I, 2], the space My .., carries a
natural structure of Frobenius manifold. The invariant inner product n and the
intersection form g of two vectors @', 0" tangent to My, ., ,, at a point A(¢) can be

defined by the following formulae

77(8/’8//) _ (_1>k+1 Z dl;\e:SO al()‘“o)d:lp)?(a;)()‘(@)d(p)’ (52)
[A|<o0
and
900 =— Y res &' (log A(soglaif;é;”( (;c;g Ap)de) (5.3)
[A|<oo

In these formulae, the derivatives d'(A(p)dy) ete. are to be calculated keeping ¢
fixed. The formulae (5.2)) and (53) uniquely determine multiplication of tangent

vectors on My, , ,, assuming that the Euler vector field E has the form

E= ) % (5.4)

For tangent vectors @', 0" and 0" to My, , one has

' (A(p)dp)d" (A(p)dp) 0" (A(p)dp)
d,0",0") = — . 5.5
C( ; ) ) |>;oo dI;\e:SO d)\((p)d@ ( )
The canonical coordinates uq, -+ , U rminy1 for this multiplication are the critical

values of A\(¢) and

Oug * Ouy = 00pOy,, Where 0,, = aiua (5.6)
For the clarity, we use the notations
l
AP) = (PP =1)™ ) a;P*™m) =k +m+n,
j=0
. _d\(P) B ;AP
P = Z5 P=cosle). Plo)=G-=—sine)  G)
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Without confusion, we always use A\(P) instead of A(¢). Before preceding the

main result, we give some useful identities.

Lemma 5.1.

, 2PP'(p) My ‘
Vi) = A =t (5.9)
J

Proof. This follows from

N(p) = 2PP'(9)A(p) (Z 5 1_p2 - - %)

and the definition of A(¢) in (B.8)). O

Let us factorize

I+1
N(g) =2kag (P> = 1) ' P> [[(P* = 2)P'(¢), da=P(ta), (5.10)

a=1

where all ¢2 are distinct. When m = 0, we choose P'(¢;,;) = 0, that is to say,
7\pl—l-l = 077T7 i'e'7 qi+1 = P(¢l+1) =1.

Lemma 5.2. For1 < a <[+ 1, we have

CamPP ()N
’ (¢)2 (SD) |%0:1/’a7 Ca,m = 2 - 6a,l+15m,0- (511)

N () = =

Proof. By definition, we have

I+1
" d —m— —zn— /
N'(p) = 2kao g ((P? =) P ) TP = ) Po)
a=1
d I+1
+ 2kag (PP - 1) TP (H(zﬂ - qi)) P'(p)
® a=1
I+1
d*P
2 -m—1p—2n—1 2 2
+ 2kay(P?—1)"""'P E(P —qa)%
_ N2PP@N(9)  @nt DP(9X(e) | (2m+ 1)PX(9)
P?—p2 P Ple)
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So, with the use of (G.I0), we get

I+1
2PP'(p)N(p)  (2m+1)PXN(p)
>\// o — _
(w ) aZ::I P2 _pg + P,(QO) |S0 Ya
( 2PP'(¢ )X( )
P2 ‘90 wa’ O{:17-..’l7
PX(g )‘“
= -0 W, a=1+1, m=0,
2P P () Ny
Pf |¢ —— a=Il+1, m#0
\
CamPP (¢ )X( )
= P2 o q2 |99:wa'

Thus the lemma is proved.

We define

then

aua ( )|so g — YaB-

Observe that

(P? — 1) P19, N(P) = (Ouaa0) PP + -+ + (Ou, i)
is a polynomial of P and

(P = )™ P10, A(P) g, = (g — 1™ 3 b0,

we thus obtain, using the Lagrange interpolation formula,

camPP'(p) XN(p)
P?—q% N'(¢a)’

Ou A(p) = a=1---1+1

Lemma 5.3.

__CamPs P(ps) 3
N (o) (05— q2)

8ua905 = i 5a 1 2Cam zl: pg P/(S08)2 5
2% \ AWa) Nt — (qi — vz —p3) )’

(5.12)

(5.13)

:17 >l7
(5.14)
=1+1.
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Proof. By the definition of A(¢) in (.8) and using (B.13)), we get

CamPP, N(p)
P2 — g% N'(¢a)

Putting ¢ = g for f=1,---,l into (5.13]) and using (5.9), we obtain

l
. 2ps P'(pg) A
= Oy Ap) = 2k1)\(g0)aua<pl+1—z P P2((i ])92 (w)auagos. (5.15)

s

s=1

Ca,m Pp Pl(@ﬁ) 5

a’LLa - = ) = 1a e >l
TTINWD - @)
and furthermore,
) : ~ 2p, P'(p,)
= = 2k U - 9 9 Yua¥s
>\(§0) i0 o Pl+1 ; p2 _pg 0 P
l
. 2 Cam P: P'(vs)°
= 2ki0,, — : 3 : 5.16
A e D DYy M AL
Putting ¢ = 15 into (5.10]), then
up 2 Com o p2 P'(p,)?
—= = 2kio,, — : s )
Uug AT N () ; (a5 — p3)(g2 — p?)
Especially, taking ¢ = 1,41, we obtain the desired formula of 9,_¢;+1. 0J

Lemma 5.4. For B,v=1,---,l, we have

1+1
Cam Ua 08+

S6a 1= = . 5.17
. ;N’%)(p%—qi)(p%—qg) 202 (2 — 1) (5.17)

Proof. Letting

Mz) = (z = 1)"™(ap" ™™+ Faqz ) =ag(z — 1) 2" H(z - p?)

j=1
So, A(¢) = A(2)|,=p2 and
I4+1 ! 2
d\(z ol Az II,_.(z —p7)
d( ) =kao(z—1)""""2 1H(Z—Qi)a ( >d)\(z) - l]—l—ll JQ ’
“ a=1 < (Z - 1) dz Ha:l(z - qa)
which yields that if g2 # 0 (or 1) for all « = 1,--- ;1 + 1, then 2 =0 (or 1) is not

a pole of the function
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With the use of (5II) and P'(p)? =1 — P?, we rewrite Ss., as

I+1
M) (P?— g2
S@’Y - Z / / ((p) ( 2 q204) 2 2 |<P:wa
= PN (p) P'(p) (P? = p3) (P? = p3)
I+1
_ 1y A(2) (= — g2) »
- z 2=(q5
24 2 (2 1) 22 (2 — p2) (2 — p2)
s A(2)
= 75 res ) 2 |a=g2
oo = 2 (2 — 1) == (2 — p3) (2 — p2)
1 A
= (res + res + res )— (2)
20e=e0 =gy st B (2 — 1) (2 - pB) (2 — p2)
= % res Az) dz = 75&’ )
2 a=f DCL ;1) (z—p2)2 20303 - 1)
We thus prove the identity (517). O

Lemma 5.5.

N (1) B l M
) : (k ’ ; (471 _pg)z) ' (5.18)

Proof. Observe that

l
X(g) = 2PP/(9)A() (Z ! " ”) (5.19)

PZ—p2 P2_1 P?

s=1

which yields

l
1 m n
P'(¢) <Z P2 —p? P21 ﬁ) o= = 0. (5.20)

s=1
[Case 1. m = 0]. In this case, P'(¢;41) = 0. Using (5I9) and (520), we have

A'y)
A(p)

which is exactly the formula (5.I8) because of g1 =1 and P'(¢,)* =1 — ¢>.

l l

2q7 2p?
oy =200 — k) = > = =2k — )

2 2 2 270
s=1 ql+1 Py s=1 ql+l Ps

[Case 2. m # 0]. In this case, P'(¢141) # 0. By using (5.20),

S om o (5.21)

_ 2 42 2
QP G — L 4y
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So, using (5.19) and (B.21]), we get

N'(p) B .o d : 1 m n
)\(w) |<P=¢L+1 = 2PP (Qp)d_ Z P2 2 p2 1 - F |90=¢l+1

p
( — (qiy, — p3)?

[
R
s
@
e
N——

We are now in a position to state our main theorem in this section.

Theorem 5.6. Let

f: (zla e >$l+l) = (Spla e 7SDI+1)7 (522)

be a map defined by
P :ﬂ-(xj_xj—l)7 550:07 j: 17 7l7 Pl41 = T4

Then
(1). the map B2 establishes a diffeomorphism of the orbit space of W®) ()
to the space My, . Moreover,

(2). the induced diffeomorphism (5.22) is an isomorphism of Frobenius mani-
folds.

Proof. (1). The first part follows from the explicit formulae for y" and a,., that is,

J
ap = ekylﬂ7 a; = (_1)j <Z 9J—s e(k—ds)lerlys(x) + ekylﬂ) cj=1,---,1, (5.23)

s=1

where dy =sfors=1,--- kandd;, =k fors=k+1,--- L.
(2). Tt is not difficult to check that the Euler vector fields (B.4]) and (B.79)
coincide. So it suffices to prove that the intersection form (5.3) coincides with

the intersection form of the orbit space, and the metric (5.2)) coincides with the

metric (3.18).
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By definition of 7 in (2] and using (B.13]), we get

Nap(1) = 0Oy ) = (1) Y res 8“Q<A(‘P)dng(k(<ﬂ)ds&)

_ gy ComComP P (@) N(p)
= UL T i g Vv

We remark that [¢,] represents four different points 4, and £, + 7 satisfying
q?{ = (ell¥] 4 e=1¥71)2 Obviously, when o # 3, 14s(u) = 0. So,

2 P2Pl( ) ( )
kL Ca,m ¥
Tealu) = (FDT 1 T~ PRy V(i >2d¢
2c; P2 A\P)(P*—1)
= (-1)F 2% P
( ) A//(w )2 PI‘(iSq P2 _ qa P2 _ qa d
2 2 2
B 2 PrAPP -1

VN A P P

= (1 2l

N (Ya)
We thus obtain

2 Com0,
1 k+14 Cam aﬁ.
)

Similarly, we can obtain the formula of gus(u) := g(Ou,,0u,) as

Mg () =
2 ca,méaﬁ
) = )
-9
Observe that the vector field e = Z cjm in (3.20) in the coordinates ay, - - - , aj41

coincides with e = (—1)* Z ( )L The shifting
s—0 aak—l—m s

m
Ak4m—s — Aftm—s +c (_]-)m_s( ), S = 0, e ,m,
produces the corresponding shift

Uy —> Ug +¢, a=1,--- 141
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of the critical values. This shift does not change the critical points v, neither the

values of the second derivative \’(,). So

L.g* = L.(—

ua A" (V)
2 Ca,m(socﬁ

(=1)

ki N (Wa)
2 Ca,m(sag

Finally, we want to compute the metric g”7() given by

I+1

1

s

&Pv

- Z Gar (1) Oug Ouy

a,k=1

Using (5.14), (517) and (5.I8]), we have

Case 1. 1 < 3,7 <L

97 (p) = —

pgpyp

I+1

I+1
1

u
1 Jaa

Comn Un

Z V()

Case 2. 1<pg<land y=1+1.

B,l+1(

ps P'(ps)

I+1

>

4ki  =ps— a3
ps P'(vp) 1
4ki pzﬁ — ql2+1

<5a,l+1 +

s=1

pg_

a2)(P2 — ¢2)

2 Cam U

=n*. (5.2

——— 0y, 5 Ou,, P~ -
( ) B Y

1

P2 P'(s)?

4)

V() (s

ps P'(ps)

2 [+1

—2)(¢% — p?)

QCamua

)

ql+1

Z >\// wa

p: =

p3)(42

p%))



50

Case 3. f=v=1+1.

I+l " ¢ 2 / 2
I4+1,1+1 o Ua N (Vo) [ Oa J41 2 Ca,m < P/( )
g (30) o Z k2 Com )\(¢ )\// ¢a Z .9

a=1 s=1 ql-‘rl ps)(qa ps)

1 N'(W41) L p; P'(s)?
8k2 A1) 2k* &= (ghy — p2)?

+ Z ps p] P’ SOS)2 P/ (‘OJ 2 lil: Cam U
%2 2@y = P2) (@1 — 9)) 2 N (W) (@2 — p2) (2 — 1))
P2 P'(s) 1 P2 P'(p,)?
k2 ( Z ql-i-l p3) ) 2k? ; (471 — p3)?

1 Z P20 P () P'(;)? 5s;

4k2 s,5=1 (ql-l-l ps) (ql+1 - p?) p? (p? - ql2+1>
1
4k

Using the isomorphism (5.22)), it is easy to know that the intersection form g*?(y)
coincides with (, )~ defined in (BI) and [B2)). The coincidence of the metric
(E2) with the metric ([BI8) follows (524)). We thus complete the proof of the

theorem. ]

Remark 5.7. (1). When m = 0, M0, ~ My o(Ci), which is the Frobenius
manifold structure constructed in arXiv:052365v1 ([11] ).

(2). On the orbit space of the extended affined Weyl group W(k)(DHg), Dubrovin
and Zhang constructed a weighted homogenous polynomial Frobenius structure, de-
noted by M](Dk%(DkH) which is isomorphic to My 11. Actually, in this case, there
is a tri-polynomial description introduced in [I7, [19], also used in [10].

6. CONCLUDING REMARKS

For the root systems of type B;,C; and D;, we have constructed families of
Frobenius manifold structures on the orbit spaces of the extended affine Weyl
groups W(k)(R) with respect to the choice of an arbitrary vertex on the Dynkin
diagram, as it was suggested in [I8] motivated by the results of [20, [13], [14].
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It remains a challenging problem to understand whether the constructions of
the present paper can be generalized to the root systems of the types Eg, E7, Eg,
Fy, G5. Another open problem is to obtain an explicit realization of the integrable
hierarchies associated with the Frobenius manifolds of the type W(k)(R). So far
this problem was solved only for R = A;, see [3, [, 8, @, 15 16] for details. We
plan to study these problems in subsequent publications.

To end up this section, we remark that the potential of the semisimple Frobenius
manifold structures constructed above from the root systems of type (Cj, k, m = 0)

has the form

1 k I+1 k a 2 13 1 +1
F= g (8% + t ZnaﬁttﬁJer]t Bt tl) Sian
a,B#k
where f;(¢%,¢%,...,t',%),j = 0,...,n are some polynomials of their independent

variables. The Euler vector field has the form
l
0 0
j:

Here 0 < d; < 1,7 > 0, they also satisfy the duality relation given in (3.68)), (3.69)
for the case m = 0. We expect that these potentials of semisimple Frobenius
manifolds together with the ones that are constructed in [7] exhaust all solutions

of the above form, and we have verified this for the cases when [ = 1,2,3 and

n < 6.
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