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EXTENDED AFFINE WEYL GROUPS OF BCD TYPE,
FROBENIUS MANIFOLDS AND THEIR LANDAU-GINZBURG

SUPERPOTENTIALS

BORIS DUBROVIN IAN A.B. STRACHAN YOUJIN ZHANG DAFENG ZUO

Abstract. For the root systems of type Bl, Cl and Dl, we generalize the result

of [7] by showing the existence of Frobenius manifold structures on the orbit

spaces of the extended affine Weyl groups that correspond to any vertex of the

Dynkin diagram instead of a particular choice made in [7]. It also depends

on certain additional data. We also construct LG superpotentials for these

Frobenius manifold structures.
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1. Introduction

Let R be an irreducible reduced root system defined in an l-dimensional Eu-

clidean space V with the Euclidean inner product ( , ). We fix a basis of simple

roots α1, . . . , αl and denote by α∨
j , j = 1, 2, · · · , l the corresponding coroots. The

Weyl group W is generated by the reflections

x 7→ x− (α∨
j ,x)αj, ∀x ∈ V, j = 1, . . . , l. (1.1)

Recall that the Cartan matrix of the root system has integer entries Aij =
(
αi, α

∨
j

)

satisfying Aii = 2, Aij ≤ 0 for i 6= j. The semi-direct product of W by the

lattice of coroots yields the affine Weyl group Wa that acts on V by the affine

transformations

x 7→ w(x) +
l∑

j=1

mjα
∨
j , w ∈ W, mj ∈ Z. (1.2)

We denote by ω1, . . . , ωl the fundamental weights defined by the relations

(ωi, α
∨
j ) = δij , i, j = 1, . . . , l. (1.3)

Note that the root system R is one of the type Al, Bl, Cl, Dl, E6, E7, E8, F4, G2.

In what follows the Euclidean space V and the basis α1, . . . , αl of the simple roots

will be defined as in Plate I-IX of [2]. Let us fix a simple root αk and define an

extension of the affine Weyl group Wa in a similar way as it is done in [7].

Definition 1.1. The extended affine Weyl group W̃ = W̃ (k)(R) acts on the ex-

tended space

Ṽ = V ⊕ R ,

it is generated by the transformations

x = (x, xl+1) 7→ (w(x) +

l∑

j=1

mjα
∨
j , xl+1), w ∈ W, mj ∈ Z, (1.4)

and

x = (x, xl+1) 7→ (x+ γ ωk, xl+1 − γ). (1.5)



3

Here 1 ≤ k ≤ l, γ = 1 except for the cases when R = Bl, k = l and R = F4, k = 3

or k = 4, in these three cases γ = 2.

The above definition of the extended affine Weyl group coincides with the one

given in [7] for the particular choice of αk that is made there. We note that in

the cases for which γ = 1 the number 1
2
(αk, αk) are integers, while for the three

exceptional cases 1
2
(αk, αk) =

1
2
.

Let us introduce coordinates x1, . . . , xl on the space V by

x = x1α
∨
1 + · · ·+ xlα

∨
l . (1.6)

Denote by f = det(Aij) the determinant of the Cartan matrix of the root system

R.

Definition 1.2 ([7]). A = A(k)(R) is the ring of all W̃ -invariant Fourier poly-

nomials of the form

∑

m1,...,ml+1∈Z

am1,...,ml+1
e2πi(m1x1+···+mlxl+

1
f
ml+1xl+1)

bounded in the limit

x = x0 − iωkτ, xl+1 = x0l+1 + iτ, τ → +∞ (1.7)

for any x0 = (x0, x0l+1).

We introduce a set of numbers

dj = (ωj, ωk), j = 1, . . . , l (1.8)

and define the following Fourier polynomials [7]

ỹj(x) = e2πidjxl+1yj(x), j = 1, . . . , l, (1.9)

ỹl+1(x) = e
2πi
γ
xl+1. (1.10)

Here y1(x), . . . , yl(x) are the basic Wa-invariant Fourier polynomials defined by

yj(x) =
1

nj

∑

w∈W
e2πi(ωj ,w(x)), nj = #{w ∈ W |e2πi(ωj ,w(x)) = e2πi(ωj ,x)}. (1.11)



4

It was shown in [7] that for some particular choices of the simple root αk, a

Chevalley-type theorem holds true for the ring A, i.e., it is isomorphic to the

polynomial ring generated by ỹ1, . . . , ỹl+1, and thus the orbit space defined as

M = SpecA of the extended affine Weyl group W̃ is an affine algebraic variety of

dimension l+1. In [7] it was further proved that on such an orbit space there exists

a Frobenius manifold structure whose potential is a polynomial of t1, . . . , tl+1, et
l+1

.

Here t1, . . . , tl+1 are the flat coordinates of the Frobenius manifold. For the root

system of type Al, there is in fact no restrictions on the choice of αk. However,

for the root systems of type Bl, Cl, Dl, E6, E7, E8, F4, G2 there is only one choice

for each.

In [18] Slodowy pointed out that the Chevalley-type theorem of [7] is a con-

sequence of the results of Looijenga and Wirthmüller [13, 14, 20], and in fact it

holds true for any choice of the base element αk, or equivalently, for any fixed

vertex of the Dynkin diagram. So we have

Theorem 1.3 ([18, 20, 13, 14]). The ring A is isomorphic to the ring of polyno-

mials of ỹ1(x), · · · , ỹl+1(x).

A natural question, as it was pointed out in [7, 18], is whether the geometric

structures that were revealed in [7] also exist on the orbit spaces of the extended

affine Weyl groups for an arbitrary choice of the root αk? The purpose of the

present paper is to give an affirmative answer to this question for the root systems

of type Bl, Cl and also for Dl. It will be organized as follows.

In Sec.2 we give an elementary proof of Theorem 1.3 that is based on the proof

of the Chevalley type theorem given in [7].

Let M be the orbit space of the extended affine Weyl group W̃ (k)(Cl) and M̃
a covering of M\ {ỹl+1 = 0}. In Sec.3, firstly we introduce an indefinite metric

( , )
∼

on Ṽ = V ⊕ R given by

(dxs, dxn)
∼

=
s

4π2
, (dxs, dxl+1)

∼

= 0, (dxl+1, dxl+1)
∼

= − 1

4kπ2
(1.12)

for 1 ≤ s ≤ n ≤ l. The projection

P : Ṽ → M̃
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induces the following symmetric bilinear form on T ∗M̃:

gij(y) :=
l+1∑

a,b=1

∂yi

∂xa
∂yj

∂xb
(dxa, dxb)

∼

, (1.13)

where y1 = ỹ1, . . . , y
l = ỹl, y

l+1 = log ỹl+1 = 2πixl+1. Afterwards, on certain open

subset U of M we construct a flat pencil of metrics gij(y) and ηij(y), where

ηij(y) := Legij(y) (1.14)

and the vector field e has the form

e =
l∑

j=k

cj
∂

∂yj
. (1.15)

It depends on the choice of an integer m in the range 0 ≤ m ≤ l − k. Namely,

for a given m the coefficients ck, · · · , cl are defined by the generating function
∑l

j=k cju
l−j = (u+ 2)m(u− 2)l−k−m. Furthermore, we show that

Main Theorem 1. (Theorem 3.14) For any fixed integer 0 ≤ m ≤ l − k, there

exists a unique Frobenius manifold structure, denoted by Mk,m(Cl), of charge

d = 1 living on the covering of the orbit space M \ {tl−m = 0} ∪ {tl = 0}
of W̃ (k)(Cl) polynomial in t1, · · · , tl+1,

1

tl−m
,
1

tl
, et

l+1
for a suitable choice of flat

coordinates t1, · · · , tl+1 for the metric (1.14) (see Theorem 3.10 below) such that

(1) The unity vector field e coincides with

l∑

j=k

cj
∂

∂yj
=

∂

∂tk
;

(2) The Euler vector field has the form

E =
l∑

α=1

d̃αt
α ∂

∂tα
+

1

k

∂

∂tl+1
, (1.16)

where d̃1, . . . , d̃l are defined in (3.62)–(3.64).

(3) The invariant flat metric and the intersection form of the Frobenius man-

ifold structure coincide respectively with the metric (ηij(t)) and (gij(t)) on

the covering of M\ {tl−m = 0} ∪ {tl = 0}.

In Sec.4 we further show that for the root systems of type Bl and Dl we can

apply a similar construction as the one for the root system of type Cl. The
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resulting Frobenius manifolds are isomorphic to those obtained from the root

system of type Cl.

Observe that in the case of the root system of type Al, in [7] it is shown

that the extended affine Weyl group W̃ (k)(Al) describes monodromy of roots of

trigonometric polynomials with a given bidegree being of the form

λ(ϕ) = eikϕ + a1e
i(k−1)ϕ + · · ·+ ale

i(k−l)ϕ, al 6= 0.

A natural question is whether there exists a similar construction for the root

systems of type Bl, Cl and Dl? In Sec.5, let us denote by Mk,m,n the space of

a particular class of cosine Laurent series of one variable with a given tri-degree

(2k, 2m, 2n) being of the form

λ(ϕ) =
(
cos2(ϕ)− 1

)−m k+m+n∑

j=0

aj cos
2(k+m−j)(ϕ), a0ak+m+n 6= 0,

where all aj ∈ C, m,n ∈ Z≥0 and k ∈ N. The space Mk,m,n carries a natural

structure of Frobenius manifold. Its invariant inner product η and the intersection

form g of two vectors ∂′, ∂′′ tangent to Mk,m,n at a point λ(ϕ) can be defined by

the following formulae

η(∂′, ∂′′) = (−1)k+1
∑

|λ|<∞
res
dλ=0

∂′(λ(ϕ)dϕ)∂′′(λ(ϕ)dϕ)

dλ(ϕ)
, (1.17)

and

g(∂′, ∂′′) = −
∑

|λ|<∞
res
dλ=0

∂′(log λ(ϕ)dϕ)∂′′(log λ(ϕ)dϕ)

d log λ(ϕ)
. (1.18)

Moreover, we will show that

Main Theorem 2. (Theorem 5.6 ) There is an isomorphism of Frobenius man-

ifolds between Mk,m,n and Mk,m(Ck+m+n).

A function involved in the representation of the form (1.17), (1.18) of the flat

pencil of metrics on the Frobenius manifold is called Landau–Ginzburg (LG) su-

perpotential of the Frobenius manifold. Observe that the multiplication law on
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the tangent spaces to the Frobenius manifold can also be expressed in terms of

the LG superpotential (see eq. (5.5) below).

Some concluding remarks are given in the last section.

2. A proof of Theorem 1.3 related to the root systems of type

Bl, Cl, Dl

In this section, we give an elementary proof of the Theorem 1.3 for the root

systems of type Bl, Cl and Dl for any fixed vertex of the Dynkin diagram. To

this end, we first write down the explicit expressions of the invariant Fourier

polynomials ỹj(x) that are defined in (1.9), (1.10) for these root systems with the

fixed simple root αk, hereafter α1, . . . , αl denote the standard base of simple roots

as given in [2]. We then prove the theorem by using an approach that is similar

to the one used in [7].

For the root system of type Bl, the numbers dj defined in (1.8) have the values

di = i, 1 ≤ i ≤ k, dj = k, k + 1 ≤ j ≤ l − 1, dl =
k

2
, (2.1)

for k < l and

di =
i

2
, 1 ≤ i ≤ l − 1, dk =

l

4
(2.2)

for k = l. The Wa-invariant Fourier polynomials y1(x), . . . , yl(x) defined in (1.11)

have the expressions [12]

yj(x) = σj(ξ1, · · · , ξl), j = 1, . . . , l − 1, (2.3)

yl(x) =

l∏

j=1

(
eiπ vj + e−iπ vj

)
, (2.4)

where

v1 = x1, vm = xm − xm−1, 2 ≤ m ≤ l − 1,

vl = 2xl − xl−1, (2.5)

ξj = e2 iπ vj + e−2 iπ vj , 1 ≤ j ≤ l.
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Here and henceforth the functions σj(ξ1, . . . , ξl) denote the j-th elementary sym-

metric polynomial of ξ1, · · · , ξl defined by

l∏

j=1

(z + ξj) =
l∑

j=0

σj(ξ1, . . . , ξl)z
l−j . (2.6)

For the root system of type Cl, the numbers dj are given by

d1 = 1, . . . , dk−1 = k − 1, dj = k, k ≤ j ≤ l. (2.7)

The Wa-invariant Fourier polynomials y1(x), . . . , yl(x) defined in (1.11) have the

expressions

yj(x) = σj(ξ1, · · · , ξl). (2.8)

Here ξj are defined by

ξj = e2 iπ (xj−xj−1) + e−2 iπ (xj−xj−1), x0 = 0, 1 ≤ j ≤ l.

For the root system of type Dl, we have

i)

dj = j, 1 ≤ j ≤ k, dj = k, k + 1 ≤ j ≤ l − 2, (2.9)

dj =
k

2
, j = l − 1, l (2.10)

for k ≤ l − 2; and

ii)

dj =
j

2
, 1 ≤ j ≤ l − 2, dl−1 =

l

4
, dl =

l − 2

4
(2.11)

for k = l − 1; and

iii)

dj =
j

2
, 1 ≤ j ≤ l − 2, dl−1 =

l − 2

4
, dl =

l

4
(2.12)
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for k = l. The basis of the Wa-invariant Fourier polynomials defined in (1.11)

has the form

yj(x) = σj(ξ1, · · · , ξl), j = 1, . . . , l − 2,

yl−1(x) =
1

2

(
l∏

j=1

(
eiπvj + e−iπvj

)
+

l∏

j=1

(
eiπvj − e−iπvj

)
)
, (2.13)

yl(x) =
1

2

(
l∏

j=1

(
eiπvj + e−iπvj

)
−

l∏

j=1

(
eiπvj − e−iπvj

)
)
,

where

v1 = x1, vm = xm − xm−1, 2 ≤ m ≤ l − 2,

vl−1 = xl + xl−1 − xl−2, vl = xl−1 − xl, (2.14)

ξj = e2 iπ vj + e−2 iπ vj , 1 ≤ j ≤ l.

Proof of the Theorem 1.3 for the root system R = Bl, Cl, Dl. From the explicit

expressions of the Fourier polynomials ỹ1(x), . . . , ỹl+1(x), it is not difficult to see

that they are W̃ (k)(R)-invariant. So in order to prove the theorem, we only need

to show that any element f(x) of the ring A can be expressed as a polynomial

of ỹ1(x), . . . , ỹl+1(x). By using the fact that the ring of Wa-invariant Fourier

polynomials is isomorphic to the polynomial ring generated by y1(x), . . . , yl(x)

and by using the W̃ -invariance of the function f(x) ∈ A, we can represent it as a

polynomial of ỹ1(x), . . . , ỹl(x), ỹl+1(x), ỹ
−1
l+1. Assume

f(x) =
∑

n≥−N
ỹnl+1 Pn(ỹ1(x), . . . , ỹl(x)),

and the polynomial P−N(ỹ1(x), . . . , ỹl(x)) does not vanish identically for certain

positive integer N . From the definition of the functions ỹj(x) we know that in the

limit (1.7)) we have

yj(x) = e2πdjτ [y0j (x
0) +O(e−2απτ )], j = 1, . . . , l, (2.15)
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where α is a certain positive integer and the expressions of the functions y0j (x
0)

will be given below. So in the limit (1.7)) the function f(x) behaves as

f(x) = e
2π
γ
Nτ− 2πi

γ
Nx0

l+1[P−N(ỹ
0
1(x

0), . . . , ỹ0l (x
0)) +O(e−2βπτ )]

for a certain positive integer β and

ỹ0j (x
0) = e2πi djx

0
l+1 y0j (x

0), j = 1, · · · , l.

Since the function f(x) is bounded for τ → +∞, we must have

P−N(ỹ
0
1(x

0), . . . , ỹ0l (x
0)) ≡ 0

for any x0 = (x0, x0l+1). This leads to a contradiction to the algebraic independence

of the functions ỹ01, . . . , ỹ
0
l that we will now prove case by case for the root systems

of the type Bl, Cl and Dl.

i) For the root system of type Bl with 1 ≤ k ≤ l − 1,

y0j (x
0) = ρj , j = 1, · · · , k,

y0s(x
0) = ρkρs, s = k + 1, · · · , l − 1,

y0l (x
0) =

√
ρkρl ,

where the functions ρi are defined by

ρj = σj(e
2πiv01 , · · · , e2πiv0k), j = 1, · · · , k,

ρs = σs−k(ξ
0
k+1, · · · , ξ0l ), s = k + 1, · · · , l

with

ξ0m = e2πiv
0
m + e−2πiv0m , m = 1, · · · , l,

v01 = x01, v0j = x0j − x0j−1, 2 ≤ j ≤ l − 1, v0l = 2 x0l − x0l−1.

Thus we obtain

det

(
∂y0i (x

0)

∂ρj

)
=

ρl−kk

2
√
ρkρl

. (2.16)
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When k = l, we have

y0j (x
0) = ρj = σj(e

2πiv01 , · · · , e2πiv0l ), j = 1, · · · , l − 1,

y0l (x
0) =

√
ρl, ρl = σl(e

2πiv01 , · · · , e2πiv0l ),

det(
∂y0i (x

0)

∂ρj
) = 1. (2.17)

ii) For the root system of type Cl,

y0j (x
0) = ρj , j = 1, · · · , k,

y0s(x
0) = ρkρs, s = k + 1, · · · , l,

where the functions ρj are defined by

ρj = σj(e
2πiv01 , · · · , e2πiv0k), j = 1, · · · , k,

ρs = σs−k(ξ
0
k+1, · · · , ξ0l ), s = k + 1, · · · , l

with

ξ0m = e2πiv
0
m + e−2πiv0m ,

v01 = x01, v
0
m = x0m − x0m−1, m = 2, · · · , l.

Thus we get

det

(
∂y0i (x

0)

∂ρj

)
= (ρk)

l−k. (2.18)

iii) For the root system of type Dl with k ≤ l − 2,

y0j (x
0) = ρj, j = 1, · · · , k,

y0s(x
0) = ρkρs, s = k + 1, · · · , l − 2,

y0l−1(x
0) =

1

2

√
ρk (ρl + ρl−1) , y0l (x

0) =
1

2

√
ρk (ρl − ρl−1)

where the functions ρj are given by

ρj = σj(e
2πiv01 , · · · , e2πiv0k), j = 1, · · · , k,

ρs = σs−k(ξ
0
k+1, · · · , ξ0l ), s = k + 1, · · · , l − 2,

ρl−1 =

l∏

s=k+1

(
eiπv

0
j + e−iπv

0
j

)
, ρl =

l∏

s=k+1

(
eiπv

0
j − e−iπv

0
j

)
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with

ξ0m = e2πiv
0
m + e−2πiv0m ,

v01 = x01, v
0
m = x0m − x0m−1, m = 2, · · · , l − 2,

v0l−1 = x0l + x0l−1 − x0l−2, v0l = x0l−1 − x0l .

Thus we know

det

(
∂y0i (x

0)

∂ρj

)
=

1

2
(ρk)

l−k−1. (2.19)

iv) For the case Dl with k = l − 1 we have

y0m(x
0) = ρm, m = 1, · · · , l − 2,

y0l−1(x
0) =

√
ρl, y0l (x

0) =
ρl−1√
ρl
,

where the functions ρj are defined by

ρj = σj(e
2πiv01 , · · · , e2πiv0l ), j = 1, · · · , l

with

v01 = x01, v
0
m = x0m − x0m−1, 2 ≤ m ≤ l − 2,

v0l−1 = x0l + x0l−1 − x0l−2, v
0
l = x0l−1 − x0l .

So we have

det

(
∂y0i (x

0)

∂ρj

)
= − 1

2ρl
. (2.20)

v) For the case Dl with k = l the functions y0j (x
0) and ρj are defined in the same

way as we did in the above case iv) except

y0l−1(x
0) =

ρl−1√
ρl
, y0l (x

0) =
√
ρl, v0l = xl − x0l−1.

and we have

det

(
∂y0i (x

0)

∂ρj

)
=

1

2ρl
. (2.21)

From the above calculation of the Jacobian det
(
∂y0i (x

0)

∂ρj

)
and from the algebraic

independence of the functions ρ1, . . . , ρl we deduce the algebraic independence of

the functions y01(x
0),· · · ,y0l (x0). This completes the proof of the theorem.
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3. Frobenius manifold structures on the orbit space of W̃ (k)(Cl)

3.1. Flat pencils of metrics on the orbit space of W̃ (k)(Cl). Let M be the

orbit space defined as SpecA of the extended affine Weyl group W̃ (k)(Cl) for any

fixed 1 ≤ k ≤ l. As in [7] we define an indefinite metric ( , )
∼

on Ṽ = V ⊕ R

such that Ṽ is the orthogonal direct sum of V and R. Here V is endowed with

the W -invariant Euclidean metric

(dxs, dxn)
∼

=
s

4π2
, 1 ≤ s ≤ n ≤ l (3.1)

and R is endowed with the metric

(dxl+1, dxl+1)
∼

= − 1

4k π2
. (3.2)

The set of generators for the ring A = A(k)(Cl) are defined by (1.9), (1.10), (2.8)

with γ = 1. They form a system of global coordinates on M. We now introduce

a system of local coordinates on M as follows

y1 = ỹ1, . . . , y
l = ỹl, y

l+1 = log ỹl+1 = 2πi xl+1. (3.3)

They live on a covering M̃ of M\ {ỹl+1 = 0}. The projection

P : Ṽ → M̃ (3.4)

induces a symmetric bilinear form on T ∗M̃

(dyi, dyj)
∼ ≡ gij(y) :=

l+1∑

a,b=1

∂yi

∂xa
∂yj

∂xb
(dxa, dxb)

∼

. (3.5)

Denote

Σ = {y| det(gij(y)) = 0}, (3.6)

then it was shown in [7] that Σ is the P -image of the hyperplanes

{(x, xl+1)|(β,x) = r ∈ Z, xl+1 = arbitrary}, β ∈ Φ+, (2.3)

where Φ+ is the set of all positive roots.
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Proposition 3.1. The functions gij(y) and the contravariant components of its

Levi-Civita connection

Γijn (y) = −
l+1∑

s=1

gis(y)Γjsn(y), 1 ≤ i, j, n ≤ l + 1 (3.7)

are weighted homogeneous polynomials in y1, · · · , yl, eyl+1
of the degree

deg gij(y) = deg yi + deg yj, (3.8)

deg Γijn (y) = deg yi + deg yj − deg yn (3.9)

where deg yj = dj and deg yl+1 = dl+1 = 0.

Proof. The proposition follows from Γijn (y)dy
n =

∂yi

∂xp
∂2yj

∂xq∂xr
(dxp, dxq)∼dxr and

Theorem 1.3.

From this Proposition we see that Σ is an algebraic subvariety in M and the

matrix (gij) is invertible on M\Σ, the inverse matrix (gij)−1 defines a flat metric

on M\ Σ. We now proceed to look for other flat metrics on a certain subvariety

in M that are compatible with the metric (gij)−1. To this end, let us introduce

the following new coordinates on M:

θj =





ek y
l+1
, j = 0,

yje(k−j)y
l+1
, j = 1, · · · , k − 1,

yj, j = k, · · · , l
(3.10)

and denote

µj = 2πi(xj − xj−1), µl+1 = yl+1 = 2πixl+1, j = 1, · · · , l. (3.11)

In the coordinates µ1, . . . , µl+1 the indefinite metric on Ṽ has the form

(
(dµi, dµj)

∼
)
= diag(−1, . . . ,−1,

1

k
). (3.12)

Define

P (u) :=
l∑

j=0

ul−jθj = ekµl+1

l∏

j=1

(u+ ξj). (3.13)
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We can easily verify that the function P (u) satisfies

∂P (u)

∂µa
=

1

u+ ξa
P (u)(eµa − e−µa), 1 ≤ a ≤ l; (3.14)

∂P (u)

∂µl+1
= kP (u), P ′(u) :=

∂P (u)

∂u
= P (u)

l∑

a=1

1

u+ ξa
. (3.15)

Lemma 3.2. The following formulae hold true for the generating functions of the

metric (gij) and the contravariant components of its Levi-Civita connection Γijk in

the coordinates θ0, . . . , θl:

l∑

i,j=0

(dθi, dθj)
∼

ul−ivl−j = (dP (u), dP (v))
∼

= (k − l)P (u)P (v) +
u2 − 4

u− v
P ′(u)P (v)− v2 − 4

u− v
P (u)P ′(v), (3.16)

l∑

i,j,r=0

Γijr (θ)dθ
rul−ivl−j =

l+1∑

a,b,r=1

∂P (u)

∂µa

∂2P (v)

∂µb∂µr
dµr(dµa, dµb)

= (k − l)P (u)dP (v) +
u2 − 4

u− v
P ′(u)dP (v)− v2 − 4

u− v
P (u)dP ′(v)

+
uv − 4

(u− v)2
P (v)dP (u)− uv − 4

(u− v)2
P (u)dP (v). (3.17)

Here Γijr (θ) = −
l+1∑

s=1

gis(θ)Γjsr(θ).

Proof. By using (3.14) and (3.15), we have

(dP (u), dP (v))
∼

=
1

k

∂P (u)

∂µl+1

∂P (v)

∂µl+1
−

l∑

a=1

∂P (u)

∂µa

∂P (v)

∂µa

= kP (u)P (v)−
l∑

a=1

P (u)P (v)
ξ2a − 4

(u+ ξa)(v + ξa)

= kP (u)P (v)−
l∑

s=1

P (u)P (v)

(
1− u2 − 4

u− v

1

u+ ξa
+
v2 − 4

u− v

1

v + ξa

)

= (k − l)P (u)P (v) +
u2 − 4

u− v
P ′(u)P (v)− v2 − 4

u− v
P (u)P ′(v).

So we proved the first formula, the second formula can be proved in the same way.

The lemma is proved.
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The above lemma shows that in the coordinates θ0, . . . , θl the functions gij(θ)

are quadratic polynomials, and the contravariant components Γijs are homogeneous

linear functions1. To find flat metrics that are compatible with this quadratic

metric gij(θ), we need the following lemma.

Lemma 3.3. If there is a set of constants {c0, . . . , cl} such that

(i) the functions

gij(θ0 + c0λ, θ
1 + c1λ, . . . , θ

l + clλ),

Γijs (θ
0 + c0λ, θ

1 + c1λ, . . . , θ
l + clλ)

are linear in the parameter λ for 1 ≤ i, j, s ≤ l + 1, and

(ii) the matrix (ηij) with

ηij = Legij, e =
l∑

j=0

cj
∂

∂θj
(3.18)

is nondegenerate on certain open subset U of M.

Then the metrics (gij), (ηij) form a flat pencil, i.e., the linear combination (gij+

ληij) yields a flat metric on U for any λ satisfying det(gij + ληij) 6= 0, and the

contravariant components of the Levi-Civita connection for this metric equal

Γijs + λ γijs . (3.19)

Here γijs are the contravariant components of the Levi-Civita connection for the

metric (ηij) which can be evaluated by γijs = LeΓijs .

Proof. For the proof of this lemma, see Appendix D of [6].

1These metrics give rise to a quadratic Poisson structure on the space of “loops” {S1 → M}
(see [5] for the details):

{θi(a), θj(b)} = gij(θ(a))δ′(a− b) + Γij
s (θ(a))θ

s
aδ(a− b).

We plan to study such important class of quadratic metrics and Poisson structures in a separate

publication.
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Theorem 3.4. For any fixed integer 0 ≤ m ≤ l − k there is a flat pencil of

metrics (gij), (ηij) on a certain open subset U of M with (gij) given by (3.5) and

ηij = Legij. Here the vector field e has the form

e :=

l∑

j=k

cj
∂

∂θj
=

l∑

j=k

cj
∂

∂yj
, (3.20)

where the constants ck, · · · , cl are defined by the generating function

P0(u) =
l∑

j=k

cju
l−j = (u+ 2)m(u− 2)l−k−m. (3.21)

Explicitly, cj = (−2)j−k
m∑

s=0

(−1)m−s
(
m

s

)(
l − k −m

l − j − s

)
for j = k, · · · , l.

Proof. Firstly we want to find the constants c0, . . . , cl satisfying the condition (i)

in Lemma 3.3. It suffices to find a polynomial P0(u) =

l∑

j=0

cju
l−j such that after

the shift

P (u) 7→ P (u) + λP0(u), P (v) 7→ P (v) + λP0(v),

the right hand side of (3.16) and (3.17) are linear in λ. This yields that P0(u)

and P0(v) must satisfy

(k − l)P0(u)P0(v) +
u2 − 4

u− v
P ′
0(u)P0(v)−

v2 − 4

u− v
P0(u)P

′
0(v) = 0. (3.22)

Separating the variables and integrating one obtains

P0(u) = a

(
u− 2

u+ 2

)b
[(u− 2)(u+ 2)]

l−k
2 = (u− 2)

l−k
2

+b(u+ 2)
l−k
2

−b

for some constants a, b. This is a polynomial iff m := l−k
2

− b is a non-negative

integer. Hence any polynomial solution to eq. (3.22) must have the form P0(u) =

a(u+2)m(u−2)l−k−m for an integer where 0 ≤ m ≤ l−k. Thus, up to a common

factor the constants c0, . . . , cl are determined by

l∑

j=0

cju
l−j = (u+ 2)m(u− 2)l−k−m.

Actually, by comparing the degrees of u, we know cj = 0 for j = 0, · · · , k − 1.
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Next we want to check the condition (ii) in Lemma 3.3. In order to do this,

taking any fixed integer 0 ≤ m ≤ l− k we consider the following linear change of

coordinates

(y1, . . . , yl+1) 7→ (τ 1, . . . , τ l+1)

defined by the relations τ l+1 = yl+1 and

l∑

j=0

θju
l−j =

l−m∑

j=0

̟j (u+ 2)m (u− 2)l−m−j

−
l∑

j=l−m+1

̟j (u+ 2)l−j (u− 2)j−k−1
, (3.23)

where

̟j =





ek τ
l+1
, j = 0,

τ je(k−j)τ
l+1
, j = 1, · · · , k − 1,

τ j , j = k, · · · , l.
(3.24)

Then,

l∑

j=0

∂θj

∂τk
ul−j = (u+ 2)m(u− 2)l−k−m =

l∑

j=0

cju
l−j.

This means that in terms of the new coordinates τ i the vector field e defined in

(3.20) has the expression

e =
l∑

j=0

∂θj

∂τk
∂

∂θj
=

∂

∂τk
.

Furthermore, observe that the left hand side of (3.23) coincides with the polyno-

mial P (u), by substituting the expressions of P (u), P (v) given by the right hand

side of (3.23) and a careful analysis, the matrix (ηij(τ)) with entries

ηij(τ) = Legij(τ) (3.25)
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has the block form



W1

P1

...

Pk−1

P1 · · ·Pk−1 Pk 0 0 1

0 W2 0 0

0 0 W3 0

1 0 0 0




, (3.26)

where Wi are triangular blocks

W1 =




0 0 0 · · · 0 k

0 0 0 · · · k R1

0 0 0 · · · R1 R2

...
...

...
...

. . .
...

k R1 R2 · · · Rk−2




, (3.27)

W2 =




Q1 Q2 · · · Ql−k−m

Q2 Q3 · · · 0
...

...
... 0

Ql−k−m 0 · · · 0



, W3 =




S1 S2 · · · Sm

S2 S3 · · · 0
...

...
... 0

Sm 0 · · · 0




(3.28)

with entries

Rj = 4(k − j + 1)τ j−1eτ
l+1

+ (k − j)τ j ,

Pj = 4(k − j + 1)τ j−1eτ
l+1

,

Qs = 4sτk+s + (1− δs,l−k−m)(s+ 1)τk+s+1,

Sr = 4rτ l−m+r − 4(1− δr,m)rτ
l−m+r+1, (3.29)

1 ≤ j ≤ k, 1 ≤ r ≤ m, 1 ≤ s ≤ l − k −m.

A simple computation gives

det(ηij) = (−1)lkk−14l−kmm(l − k −m)l−k−m(τ l−m)l−k−m(τ l)
m
. (3.30)
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So the metric (ηij(τ)) does not degenerate on M\{τ ∈ M|τ l = 0, τ l−m = 0}. We

complete the proof of this theorem.

Remark 3.5. (1). The block W2 or W3 does not appears in the matrix (3.26)

when m = l − k or m = 0. (2). The flat pencil of metrics that corresponds to a

fixed integer m is equivalent to the one that corresponds to the integer l− k −m,

this is due to the fact that under replacement u 7→ −u the polynomial P0(u) =

(u+2)m(u−2)l−k−m is transformed to the polynomial (−1)l−k(u+2)l−k−m(u−2)m.

Corollary 3.6. In the coordinates τ 1, . . . , τ l+1 the components gij(τ), Γijm(τ) of the

metric (3.5) and its Levi-Civita connection are weighted homogeneous polynomials

of the degrees

deg gij = di + dj, deg Γijs (τ) = di + dj − ds. (3.31)

They are at most linear in τk.

3.2. Flat coordinates of the metric (ηij). In this subsection, we will show

that the flat coordinates of the metric (ηij) defined in the last subsection are

algebraic functions of τ 1, . . . , τ l+1, eτ
l+1

. To this end, we first perform changes of

coordinates to simplify the matrix (ηij(τ)).

Lemma 3.7. There exists a system of coordinates z1, . . . , zl+1 of the form

zj = τ j + pj(τ
1, . . . , τ j−1, eτ

l+1

), 1 ≤ j ≤ k, (3.32)

zj = τ j +
l−m∑

s=j+1

cjs τ
s, k + 1 ≤ j ≤ l − k −m, (3.33)

zj = τ j +
l∑

s=j+1

hjs τ
s, l − k −m+ 1 ≤ j ≤ l, (3.34)

zl+1 = τ l+1,

where cjs and h
j
s are some constants and pj are homogeneous polynomials of degree

dj such that in the new coordinates zi the components of the metric (ηij) can
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still been encoded into a block diagonal matrix of the form (3.26)–(3.28) with the

entries replaced by

Rj = 0, Pj = 0, Qs = 4szk+s, Sr = 4rzl−m+r, (3.35)

1 ≤ j ≤ k, 1 ≤ s ≤ l − k −m, 1 ≤ r ≤ m.

Proof. Let us first note that the (k + 1)× (k + 1) matrix (η̃ij) which has entries

η̃ij = ηij(τ), η̃k+1,m = η̃m,k+1 = δm,k, 1 ≤ i, j ≤ k, 1 ≤ m ≤ k + 1 (3.36)

coincides, under renaming of the label of coordinate τ l+1 7→ τk+1, with the matrix

(ηij(τ))(k+1)×(k+1) that is constructed as in the last subsection with respect to the

extended affine Weyl group W̃ (k)(Ck). Thus by using the results of [7] we can find

homogeneous polynomials pj, 1 ≤ j ≤ k such that under the change of coordinates

(3.32) and zj = τ j , k+1 ≤ j ≤ l+1 the matrix (ηij(z)) has the form (3.26)–(3.28)

with entries

Rj = 0, Pj = 0, Qs = 4szk+s + (1− δs,l−k−s)(s+ 1)zk+s+1,

Sr = 4rzl−m+r − 4(1− δm,r)rz
l−m+r+1,

1 ≤ j ≤ k, 1 ≤ r ≤ m, 1 ≤ s ≤ l − k −m.

To finish the proof of the lemma, we need to perform a second change of coor-

dinates. To this end, denote by Ψ an n×n matrix with entries as linear functions

of a1, . . . , an

ψij(a) = 4(i+ j − 1)ai+j−1 + κ(i, j)ai+j , i, j ≥ 1, (3.37)

κ(i, j) = i+ j, or − 4(i+ j − 1). (3.38)

Here as = 0 for s ≥ n+1. We are to find a linear transformation of the triangular

form

aj =

n∑

α=j

Bj
αb
α, B

j
j = 1, j ≥ 1 (3.39)

such that
n∑

r,s=1

4(r + s− 1)br+s−1∂a
i

∂br
∂aj

∂bs
= ψij(a). (3.40)
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Equivalently, the constants Bi
j must satisfy the relations

4(i+ j − 1)Bi+j−1
γ + κ(i, j)Bi+j

γ = 4 γ
∑

α+β=γ+1

Bi
αB

j
β,

i+ j ≤ γ ≤ n. (3.41)

Introduce the generating functions

f i(t) =
∑

α≥0

Bi
i+α t

α, i = 1, 2, . . . . (3.42)

Then the relations in (3.41) can be encoded into the following equations:

4(i+ j − 1)ti+j−2f i+j−1 + κ(i, j)ti+j−1f i+j = 4
d

dt

(
ti+j−1f if j

)
. (3.43)

When κ(i, j) = i+ j and κ(i, j) = −4(i+ j − 1), this system of equations has the

following solution respectively

f i(t) = cosh

(√
t

2

)

2 sinh

(√
t

2

)

√
t




2i−1

, (3.44)

and

f i(t) =

(
tanh(

√
t)√

t

)2i−1

. (3.45)

From the above result we know the existence of constants cjs and hjs such that

under the change of coordinates

zi 7→ zi, i = 1, . . . , k, l + 1,

zj 7→ zj +

l−m∑

s=j+1

cjs z
s, k + 1 ≤ j ≤ l −m,

zj 7→ zj +

l∑

s=j+1

hjs z
s, l −m+ 1 ≤ j ≤ l,

the matrix (ηij(z)) has the form (3.26)–(3.28) and with entries given by (3.35).

The lemma is proved.
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Lemma 3.8. Under the change of coordinates

wi = zi, i = 1, . . . , k, l + 1, (3.46)

wk+1 = zk+1(zl−m)
− 1

2(l−m−k) , (3.47)

ws = zs(zl−m)−
s−k

l−m−k , s = k + 2, · · · , l −m− 1, (3.48)

wl−m = (zl−m)
1

2(l−m−k) , (3.49)

wl−m+1 = zl−m+1(zl)−
1

2m , (3.50)

wr = zr(zl)−
r+m−l

m , r = l −m+ 2, · · · , l − 1, (3.51)

wl = (zl)
1

2m , (3.52)

the components of the metric (ηij(z)) are transformed to the form




A 0 0 0 0

0 0 0 0 1

0 0 B1 0 0

0 0 0 B2 0

0 1 0 0 0




, (3.53)

where the matrix A = A(k−1)×(k−1) has entries Aij = δi,k−jk and the upper trian-

gular matrices B1 and B2 have the form

B1 =




0 0 0 0 · · · 0 2

0 Hk+3 Hk+4 · · · Hl−m−1 Hl−m

0 Hk+4 Hk+5 · · · Hl−m
...

...
...

0 Hl−m

2




(3.54)
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and

B2 =




0 0 0 0 · · · 0 2

0 Hl−m+3 Hl−m+4 · · · Hl−1 Hl

0 Hl−m+4 Hl−m+5 · · · Hl

...
...

...

0 Hl

2




(3.55)

with

Hk+s = 4s(wl−m)−2wk+s, Hl−m = 4(l −m− k)(wl−m)
−2
,

Hl−m+j = 4j(wl)−2wl−m+j, Hl = 4m(wl)
−2
, (3.56)

3 ≤ s ≤ l −m− k − 1, 3 ≤ j ≤ m− 1.

Proof. By a straightforward calculation.

Remark 3.9. When m = l−k, the matrix B1 does not appear in (3.53), i.e., the

matrix given in (3.53) has the form




A 0 0 0

0 0 0 1

0 0 B2 0

0 1 0 0



,

In this case we use the formulae (3.46), (3.50)–(3.52) for the change of coordi-

nates. When m = l − k − 1, we have B1 = 1, and we use the formulae (3.46),

(3.49)–(3.52) to define the new coordinates. When m = l − k − 2, the matrix B1

has the form


 0 2

2 0


 . We understand the above lemma in a similar way as we

did for the cases when m = 0, 1, 2.
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Theorem 3.10. We can choose the flat coordinates of the metric (ηij(w)) in the

form

t1 = w1, . . . , tk = wk, tl+1 = wl+1,

tk+1 = wk+1 + wl−m hk+1(w
k+2, . . . , wl−m−1),

tj = wl−m(wj + hj(w
j+1, . . . , wl−m−1)), k + 2 ≤ j ≤ l −m− 1,

tl−m = wl−m,

tl−m+1 = wl−m+1 + wl hl−m+1(w
l−m+2, . . . , wl−1),

ts = wl(ws + hs(w
s+1, . . . , wl−1)), l −m+ 2 ≤ s ≤ l − 1,

tl = wl.

Here hl−m−1 = hl−1 = 0, hj are weighted homogeneous polynomials of degree
k (l−m−j)
l−m−k for j = k+1, . . . , l−m−2 and hs are weighted homogeneous polynomials

of degree k (l−s)
m

for s = l−m+ 2, . . . , l− 1. The degrees of the coordinates wi are

defined in a natural way through the degrees of yi given in (2.7).

Proof. From the block diagonal form (3.53) of the matrix (ηij(w)) and the

definition (3.54)–(3.56) of its entries, we know that the flat coordinates can be

chosen to have the form

ti = wi, 1 ≤ i ≤ k, i = l + 1, (3.57)

tj = tj(wk+1, . . . , wl−m), k + 1 ≤ j ≤ l −m (3.58)

ts = ts(wl−m+1, . . . , wl), l −m+ 1 ≤ s ≤ l. (3.59)

Since the matrices B1 and B2 have the same form, and B1 becomes constant when

m = l−k or m = l−k−1, we only need to consider the flat coordinates (3.58) for

the metric that corresponds to the matrix B1 defined in (3.54) with m ≤ l−k−3.

The functions tj = tj(wk+1, . . . , wl−m) must satisfy the following system of

PDEs

∂2t

∂wa∂wb
−

l+1∑

c=1

γcab
∂t

∂wc
= 0, a, b = k + 1, . . . , l −m. (3.60)
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Introduce the (l −m− k)× (l −m− k) matrix

Φ = (φij), φij =
∂tk+i

∂wk+j
, 1 ≤ i, j ≤ l −m− k,

Then the system (3.60) can be written in the form

∂sΦ = ΦAs, ∂s =
∂

∂ws
, s = k + 1, . . . , l −m, (3.61)

where the entries of the coefficient matrices As are rational functions of w
k+1, . . . , wl−m.

It follows from the simple expressions of the entries of the matrix B1 that the

systems (3.61) are regular at w =(wk+1, . . . , wl−m) = 0 except for case when

s = l −m, in this case the coefficient matrix has the form

Al−m = diag(0,
1

wl−m
, . . . ,

1

wl−m
, 0).

Note for all the cases with m = k + 1, . . . , l − m − 1 the entries of the matrices

As are weighted homogeneous polynomials of wk+1, . . . , wl−m.

Now we put Φ in the form

Φ = Ψdiag(1, wl−m, . . . , wl−m, 1),

then the systems in (3.61) are converted to

∂sΨ = ΨBs, ∂lΨ = 0, s = k + 1, . . . , l −m− 1.

The entries of the coefficient matrices Bs are now weighted homogeneous poly-

nomials of wk+1, . . . , wl−m, thus we can find a unique solution Ψ of the above

systems such that it is analytic at w = 0 and

Ψ|
w=0 = diag(1, . . . , 1).

From the weighted homogeneity of the coefficient matrices Bs it follows that the

elements of Ψ are also weighted homogeneous. Since degwj > 0 for j = k +

1, . . . , l − m we know that they are in fact polynomials of wk+1, . . . , wl−m, and

thus the results of the theorem follow. The theorem is proved.
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Due to the above construction, we can associate the following natural degrees

to the flat coordinates

d̃j = deg tj :=
j

k
, 1 ≤ j ≤ k, (3.62)

d̃s = deg ts :=
2l − 2m− 2s+ 1

2(l −m− k)
, k + 1 ≤ s ≤ l −m, (3.63)

d̃α = deg tα :=
2l − 2α + 1

2m
, l −m+ 1 ≤ α ≤ l, (3.64)

d̃l+1 = deg tl+1 := 0, deg et
l+1

:=
1

k
, (3.65)

and we readily have the following corollary.

Corollary 3.11. In the flat coordinates t1, . . . , tl+1, the nonzero entries of the

matrix (ηij(t)) are given by

ηij =





k, j = k − i, 1 ≤ i ≤ k − 1,

1, i = l + 1, j = k or i = k, j = l + 1,

4(l −m− k), j = l −m+ k − i+ 1, k + 2 ≤ i ≤ l −m− 1,

2, i = l −m, j = k + 1 or i = k + 1, j = l −m,

4m, j = 2l −m− i+ 1, l −m+ 2 ≤ i ≤ l − 1,

2, i = l, j = l −m+ 1 or i = l −m+ 1, j = l.

(3.66)

The entries of the matrix (gij(t)) and the Christoffel symbols Γijm(t) are weighted

homogeneous polynomials of t1, . . . , tl,
1

tl−m
,
1

tl
, et

l+1
of degrees d̃i+ d̃j and d̃i+ d̃j−

d̃m respectively. In particular,

gs, l+1 = d̃st
s, 1 ≤ s ≤ l, gl+1, l+1 =

1

k
,

Γl+1,i
j = d̃j δi,j, 1 ≤ i, j ≤ l + 1.

(3.67)

The numbers d̃1, . . . , d̃l+1 satisfy a duality relation that is similar to that of

[7]. To describe this duality relation, let us delete the k-th vertex of the Dynkin

diagram R. We then obtain two components R \ αk = R1 ∪ R2. For any given

integer 0 ≤ m ≤ l−k, we denote R2 = R21∪R22, where R21 = {αk+1, · · · , αl−m}
and R22 = {αl−m+1, · · · , αl}. On each component we have an involution i 7→ i∗
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given by the reflection with respect to the center of the component. Define

k∗ = l + 1, (l + 1)∗ = k, (3.68)

then we have

d̃i + d̃i∗ = 1, i = 1, . . . , l + 1, (3.69)

and from the above corollary we see that ηij is a nonzero constant iff j = i∗.

3.3. Frobenius manifold structures on the orbit space of W̃ (k)(Cl). Now

we are ready to describe the Frobenius manifold structures on the orbit space

of the extended affine Weyl group W̃ (k)(Cl). Let us first recall the definition of

Frobenius manifold, see [6] for details.

Definition 3.12. A Frobenius algebra is a pair (A,< , >) where A is a commu-

tative associative algebra with a unity e over a field K (in our case K = C) and

< , > is a K-bilinear symmetric nondegenerate invariant form on A, i.e.,

< x · y, z >=< x, y · z >, ∀ x, y, z ∈ A.

Definition 3.13. A Frobenius structure of charge d on an n-dimensional manifold

M is a structure of Frobenius algebra on the tangent spaces TtM = (At, < , >t)

depending (smoothly, analytically etc.) on the point t. This structure satisfies the

following axioms:

FM1. The metric < , >t on M is flat, and the unity vector field e is covariantly

constant, i.e., ∇e = 0. Here we denote ∇ the Levi-Civita connection for

this flat metric.

FM2. Let c be the 3-tensor c(x, y, z) :=< x · y, z >, x, y, z ∈ TtM . Then the

4-tensor (∇wc)(x, y, z) is symmetric in x, y, z, w ∈ TtM .

FM3. The existence on M of a vector field E, called the Euler vector field, which

satisfies the conditions ∇∇E = 0 and

[E, x · y]− [E, x] · y − x · [E, y] = x · y,

E < x, y > − < [E, x], y > − < x, [E, y] >= (2− d) < x, y >

for any vector fields x, y on M .
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A manifold M equipped with a Frobenius structure on it is called a Frobenius

manifold.

Let us choose local flat coordinates t1, · · · tn for the invariant flat metric, then

locally there exists a function F (t1, · · · , tn), called the potential of the Frobenius

manifold, such that

< u · v, w >= uivjws
∂3F

∂ti∂tj∂ts
(3.70)

for any three vector fields u = ui ∂
∂ti

, v = vj ∂
∂tj

, w = ws ∂
∂ts

. Here and in what

follows summations over repeated indices are assumed. By definition, we can also

choose the coordinates t1 such that e = ∂
∂t1

. Then in the flat coordinates the

components of of the flat metric < ∂
∂ti
, ∂
∂tj

> can be expressed in the form

∂3F

∂t1∂ti∂tj
= ηij, i, j = 1, . . . , n. (3.71)

The associativity of the Frobenius algebras is equivalent to the following overde-

termined system of equations for the function F

∂3F

∂ti∂tj∂tλ
ηλµ

∂3F

∂tµ∂tk∂tm
=

∂3F

∂tk∂tj∂tλ
ηλµ

∂3F

∂tµ∂ti∂tm
(3.72)

for arbitrary indices i, j, k,m from 1 to n.

In the flat coordinates the Euler vector field E has the form

E =

n∑

i=1

(d̂it
i + ri)

∂

∂ti
(3.73)

for some constants d̂i, ri, i = 1, . . . , n which satisfy d̂1 = 1, r1 = 0. From the axiom

FM3, it follows that the potential F satisfies the quasi-homogeneity condition

LEF = (3− d)F + quadratic polynomial in t. (3.74)

The system (3.71)–(3.74) is called the WDV V equations of associativity which is

equivalent to the above definition of Frobenius manifold in the chosen system of

local coordinates.

Let us also recall an important geometrical structure on a Frobenius manifold

M , the intersection form of M . This is a symmetric bilinear form ( , )∗ on T ∗M
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defined by the formula

(w1, w2)
∗ = iE(w1 · w2), (3.75)

here the product of two 1-forms w1, w2 at a point t ∈ M is defined by using the

algebra structure on TtM and the isomorphism

TtM → T ∗
t M (3.76)

established by the invariant flat metric < , >. In the flat coordinates t1, · · · , tn

of the invariant metric, the intersection form can be represented by

(dti, dtj)∗ = LEF ij = (d− 1 + d̂i + d̂j)F
ij , (3.77)

where

F ij = ηii
′

ηjj
′ ∂2F

∂ti
′

∂tj
′

(3.78)

and F (t) is the potential of the Frobenius manifold. Denote by Σ ⊂ M the

discriminant ofM on which the intersection form degenerates, then an important

property of the intersection form is that on M \ Σ its inverse defines a new flat

metric.

Theorem 3.14. For any fixed integer 0 ≤ m ≤ l−k, there exists a unique Frobe-

nius manifold structure of charge d = 1 living on the covering of the orbit space

M\ {tl−m = 0} ∪ {tl = 0} of W̃ (k)(Cl) polynomial in t1, · · · , tl+1,
1

tl−m
,
1

tl
, et

l+1

such that

(1) The unity vector field e coincides with

l∑

j=k

cj
∂

∂yj
=

∂

∂tk
;

(2) The Euler vector field has the form

E =
l∑

α=1

d̃αt
α ∂

∂tα
+

1

k

∂

∂tl+1
(3.79)

where d̃1, . . . , d̃l are defined in (3.62)–(3.64).

(3) The invariant flat metric and the intersection form of the Frobenius man-

ifold structure coincide respectively with the metric (ηij(t)) and (gij(t)) on

the covering of M\ {tl−m = 0} ∪ {tl = 0}.
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Proof. By following the lines of the proof of Lemma 2.6 given in [7] we can show

the existence of a unique weighted homogeneous polynomial

G := G(t1, . . . , tk−1, tk+1, . . . , tl,
1

tl−m
,
1

tl
, et

l+1

)

of degree 2 such that the function

F =
1

2
(tk)2tl+1 +

1

2
tk
∑

i,j 6=k
ηij t

itj +G (3.80)

satisfies the equations

gij = LEF ij, Γijm = d̃j c
ij
m, i, j,m = 1, . . . , l + 1, (3.81)

where cijm = ∂F ij

∂tm
. Obviously, the function F satisfies the equations

∂3F

∂tk∂ti∂tj
= ηij, i, j = 1, . . . , l + 1 (3.82)

and the quasi-homogeneity condition

LEF = 2F. (3.83)

From the properties of a flat pencil of metrics [6] it follows that F also satisfies

the associativity equations

cijm c
mp
q = cipm c

mj
q (3.84)

for any set of fixed indices i, j, p, q. Now the theorem follows from above properties

of the function F and the simple identity LEe = −e. The theorem is proved.

Remark 3.15. It follows from Remark 3.5 that the Frobenius manifold struc-

tures which correspond to the integers m and l − k − m are equivalent. From

the above construction we see that the potential F is in general a polynomial of

t1, . . . , tl+1,
1

tl−m
,
1

tl
, et

l+1
, in the particular cases when m = 1 and m = l − k − 1

it does not depend on 1
tl
and 1

tl−1 respectively. When k = l the Frobenius manifold

structure coincides with the one that is constructed in [7].
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3.4. Examples. To end up this section we give some examples to illustrate the

above construction of Frobenius manifold structures. For brevity, instead of

t1, . . . , tl+1 we will denote the flat coordinates of the metric ηij by t1, . . . , tl+1,

and we will also denote ∂i =
∂
∂ti

in the the following examples.

Example 3.16. [C3, k = 1] Let R be the root system of type C3, take k = 1, then

d1 = d2 = d3 = 1, and

y1 = e2 iπ x4 (ξ1 + ξ2 + ξ3) ,

y2 = e2 iπ x4 (ξ1ξ2 + ξ1ξ3 + ξ2ξ3) ,

y3 = e2 iπ x4ξ1ξ2ξ3,

y4 = 2 iπ x4,

where ξj = e2 iπ (xj−xj−1)+ e−2 iπ (xj−xj−1) and x0 = 0, j = 1, 2, 3. The metric ( , )
∼

has the form

((dxi, dxj)
∼

) =
1

4π2




1 1 1 0

1 2 2 0

1 2 3 0

0 0 0 −1



.

Case I. m = 0, i.e., e = ∂
∂y1

− 4 ∂
∂y2

+ 4 ∂
∂y3

.

We first introduce the variables

z1 = y1 + 6 ey
4

, z2 = y2 + 4 y1 + 12 ey
4

,

z3 = y3 + 2 y2 + 4 y1 + 8 ey
4

, z4 = y4.

Then the flat coordinates are given by

t1 = z1 − 2 ez4 , t2 = (z2 − 1

6
z3)(z3)−

1
4 , t3 = (z3)

1
4 , t4 = z4
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and the intersection form has the expression

g11 = 2 t2t3 e
t4 +

1

3
t3

4et4 + 4 e2t4 ,

g12 =
7

3
t3

3et4 +
7

2
t2e

t4 , g13 =
5

2
t3e

t4 , g14 = t1,

g22 = 12 t3
2et4 − 1

4
t2

2 +
1

12
t3

3t2 −
1

108
t3

6 +
1

4

t2
3

t3
3 ,

g23 = 2 t1 + 4 et4 − 1

3
t2t3 +

1

72
t3

4 − 1

4

t2
2

t3
2 ,

g24 =
3

4
t2, g

33 =
1

4

t2

t3
− 1

12
t3

2, g34 =
1

4
t3, g

44 = 1.

The potential has the form

F =
1

2
t1

2t4 +
1

2
t1t2t3 −

1

48
t2

2t3
2 +

1

1440
t2t3

5 − 1

36288
t3

8

+t2t3e
t4 +

1

6
t3

4et4 +
1

2
e2t4 +

1

48

t2
3

t3

and the Euler vector field is given by

E = t1∂1 +
3

4
t2∂2 +

1

4
t3∂3 + ∂4.

Case II. m = 1, i.e., e = ∂
∂y1

− 4 ∂
∂y3

.

Define

z1 = y1 + 2 ey
4

, z2 =
1

2
y2 +

1

4
y3 + y1 + 2 ey

4

,

z3 =
1

4
y3 − 1

2
y2 + y1 − 2 ey

4

, z4 = y4.

Then the flat coordinates are

t1 = z1 − 2ez
4

, t2 =
√
z2, t3 =

√
z3, t4 = z4
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and the intersection form is given by

g11 = 2 t2
2et4 − 2 t3

2et4 + 4 e2t4 ,

g12 = 3 t2e
t4 , g13 = −3 t3e

t4 , g14 = t1,

g22 = 2 et4 + t1 −
1

4
t3

2 − 1

4
t2

2, g23 = −1

2
t2t3,

g33 = −2 et4 + t1 −
1

4
t2

2 − 1

4
t3

2,

g24 =
1

2
t2, g

34 =
1

2
t3, g

44 = 1.

The potential has the expression

F =
1

2
t1t2

2 +
1

2
t1t3

2 +
1

2
t1

2 t4 −
1

48
t2

4

− 1

48
t3

4 − 1

8
t2

2t3
2 + t2

2et4 − t3
2et4 +

1

2
e2t4

and the Euler vector field is given by

E = t1∂1 +
1

2
t2∂2 +

1

2
t3∂3 + ∂4.

The Frobenius manifold structure that we obtain for this case is isomorphic to the

one given in Example 2.6 [A3, k = 2] of [7].

Example 3.17. [C3, k = 2] Let R be the root system of type C3, take k = 2, then

d1 = 1, d2 = d3 = 2, and

y1 = e2 iπ x4 (ξ1 + ξ2 + ξ3) ,

y2 = e2 iπ x4 (ξ1ξ2 + ξ1ξ3 + ξ2ξ3) ,

y3 = e2 iπ x4ξ1ξ2ξ3,

y4 = 2 iπ x4,
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where ξj = e2 iπ (xj−xj−1)+ e−2 iπ (xj−xj−1) and x0 = 0, j = 1, 2, 3. The metric ( , )
∼

has the form

((dxi, dxj)
∼

) =
1

4π2




1 1 1 0

1 2 2 0

1 2 3 0

0 0 0 −1
2



.

Case I. m = 0, i.e., e = ∂
∂y2

− 2 ∂
∂y3

. The Frobenius manifold structure that we

obtain for this case is isomorphic to the one given in Example 2.7 [B3, k = 2] of

[7].

Case II. m = 1, i.e., e = ∂
∂y2

+ 2 ∂
∂y3

.

We first introduce the following variables

z1 = y1 + 2 ey
4

, z2 = y2 + 4e2y
4

,

z3 = 2 y2 − 4 y1ey4 − y3 + 8 e2y
4

, z4 = y4.

Then the flat coordinates given by

t1 = z1 − 4ez
4

, t2 = z2 − 2 z1ez
4

+ 6 e2 z
4

, t3 =
√
z3, t4 = z4.

The potential has the expression

F =
1

2
t2t3

2 +
1

4
t1

2t2 +
1

2
t2

2t4 −
1

48
t3

4

− 1

96
t1

4 + t3
2e2t4 − t3

2t1e
t4 +

1

2
t1

2e2t4 +
1

4
e4t4

and the Euler vector field is given by

E =
1

2
t1∂1 + t2∂2 +

1

2
t3∂3 +

1

2
∂4.

This Frobenius manifold structure is exactly the one given in Example 2.7 [B3, k =

2] of [7].
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Example 3.18. [C4, k = 1, m = 0] Let R be the root system of type C4, take

k = 1, then d1 = d2 = d3 = d4 = 1, and

y1 = e2 iπ x5 (ξ1 + ξ2 + ξ3 + ξ4) ,

y2 = e2 iπ x5
∑

1≤a<b≤4

ξaξb,

y3 = e2 iπ x5
∑

1≤a<b<c≤4

ξaξbξc,

y4 = e2 iπ x5ξ1ξ2ξ3ξ4,

y5 = 2 iπ x5,

where ξj = e2 iπ (xj−xj−1) + e−2 iπ (xj−xj−1) and x0 = 0, j = 1, 2, 3, 4. The metric

( , )
∼

has the form

((dxi, dxj)
∼

) =
1

4π2




1 1 1 1 0

1 2 2 2 0

1 2 3 3 0

1 2 3 4 0

0 0 0 0 −1




.

Introduce the variables

z1 = y1 + 8 ey
5

, z2 = y2 + 6 y1 + 24 ey
5

,

z3 = y3 + 4 y2 + 12 y1 + 32 ey
5

, z5 = y5,

z4 = y4 + 2 y3 + 8 y1 + 4 y2 + 16 ey
5

,

and

w1 = z1 − 2ez
5

, w2 = (z2 − 1

6
z3 +

1

30
z4)(z4)−

1
6 ,

w3 = (z3 − 1

4
z4)(z4)−

2
3 , w4 = (z4)

1
6 , w5 = z5.

Then we have the expression of the flat coordinates

t1 = w1, t2 = w2 −
1

12
w2

3 w4, t3 = w3w4, t4 = w4, t5 = w5.
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The potential F is given by

F =
1

2
t1

2t5 +
1

2
t1t2t4 −

1

6912
t3

4 +
1

17280
t3

3t4
3

− 1

288
t2t4t3

2 − 1

34560
t4

6t3
2 +

1

24
t1t3

2 +
1

1440
t3t4

4t2

− 1

48
t2

2t4
2 − 1

60480
t4

7t2 +
1

345600
t4

9t3 −
1

7603200
t4

12

+
1

12
et5t3

2 +
1

6
et5t3t4

3 +
1

120
et5t4

6 + t2t4e
t5 +

1

2
e2t5

+
1

24

t3t2
2

t4
− 1

216

t2t3
3

t4
2

+
1

4320

t3
5

t4
3

with the Euler vector field

E = t1∂1 +
5

6
t2∂2 +

1

2
t3∂3 +

1

6
t4∂4 + ∂5.

Example 3.19. [C4, k = 2, m = 0] Let R be the root system of type C4, take

k = 2, then d1 = 1, d2 = d3 = d4 = 2, and

y1 = e2 iπ x5 (ξ1 + ξ2 + ξ3 + ξ4) ,

y2 = e4 iπ x5
∑

1≤a<b≤4

ξaξb,

y3 = e4 iπ x5
∑

1≤a<b<c≤4

ξaξbξc,

y4 = e4 iπ x5ξ1ξ2ξ3ξ4,

y5 = 2 iπ x5,

where ξj are defined as in the last example. The metric ( , )
∼

has the form

((dxi, dxj)
∼

) =
1

4π2




1 1 1 1 0

1 2 2 2 0

1 2 3 3 0

1 2 3 4 0

0 0 0 0 −1
2




.
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Introduce the following variables

z1 = y1 + 8 ey
5

, z5 = y5,

z2 = y2 + 6 y1ey
5

+ 24 e2y
5

,

z3 = y3 + 4 y2 + 12 y1ey
5

+ 32 e2y
5

,

z4 = y4 + 2 y3 + 4 y2 + 8 y1ey
5

+ 16 e2y5.

Then the flat coordinates are given by

t1 = z1 − 4ez
5

, t2 = z2 − 2z1ez
5

+ 6e2z
5

,

t3 = (z3 − 1

6
z4)(z4)−

1
4 , t4 = (z4)

1
4 , t5 = z5.

The Euler vector field and the potential are given respectively by

E =
1

2
t1∂1 + t2∂2 +

3

4
t3∂3 +

1

4
t4∂4 +

1

2
∂5.

F =
1

2
t2

2t5 +
1

4
t1

2t2 +
1

2
t4t3t2 +

1

1440
t4

5t3 −
1

48
t4

2t3
2

− 1

36288
t4

8 − 1

96
t1

4 +
1

2
e2 t5t1

2 +
1

6
et5t1t4

4 +
2

3
t4

4e2 t5

+et5t1t3t4 + t3t4e
2 t5 +

1

4
e4 t5 +

1

48

t3
3

t4
.

In the following, we present two more examples and omit all computations and

only list the potentials and the Euler vector fields.

Example 3.20. [C5, k = 1, m = 2] Let R be the root system of type C5, take

k = 1, m = 2, then

F =
1

2
t6t1

2 +
1

2
t1t2t3 +

1

2
t1t4t5 −

1

72
t3

4t5
4 − 1

8
t2t3t4t5

− 1

2268
t5

8 − 1

36288
t3

8 − 1

48
t3

2t2
2 − 1

48
t4

2t5
2 +

1

24
t5

4t2t3

+
1

96
t3

4t4t5 +
1

1440
t3

5t2 +
1

360
t4t5

5 + t2t3e
t6 − t4t5e

t6

−2

3
t5

4et6 +
1

6
t3

4et6 +
1

2
e2t6 +

1

48

t2
3

t3
+

1

192

t4
3

t5
.
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The Euler vector field is given by

E = t1∂1 +
3

4
t2∂2 +

1

4
t3∂3 +

3

4
t4∂4 +

1

4
t5∂5 + ∂6.

Example 3.21. [C6, k = 1, m = 2] Let R be the root system of type C6, take

k = 1, then

F =
1

2
t1

2t7 +
1

24
t1t3

2 +
1

2
t1t2t4 +

1

2
t1t5t6 −

1

48
t2

2t4
2

+
1

17280
t4

3t3
3 − 1

48
t5

2t6
2 +

1

360
t5t6

5 +
1

288
t3

2t6
4

+
17

5760
t6

4t4
6 − 1

60480
t4

7t2 −
1

72
t6

4t4
3t3 −

1

288
t2t3

2t4

+
1

1440
t2t3t4

4 − 1

96
t3

2t5t6 −
1

2268
t6

8 − 1

34560
t4

6t3
2

− 1

6912
t3

4 − 1

7603200
t4

12 +
1

24
t6

4t2t4 −
1

960
t6t4

6t5

+
1

345600
t4

9t3 −
1

8
t6t2t4t5 +

1

96
t6t4

3t3t5 +
1

6
t4

3t3e
t7

+
1

120
t4

6et7 + t2t4e
t7 − t5t6e

t7 +
1

12
t3

2et7 − 2

3
t6

4et7

+
1

2
e2 t7 +

1

24

t2
2t3

t4
− 1

216

t2t3
3

t4
2 +

1

4320

t3
5

t4
3 +

1

192

t5
3

t6
,

and the Euler vector field is given by

E = t1∂1 +
5

6
t2∂2 +

1

2
t3∂3 +

1

6
t4∂4 +

3

4
t5∂5 +

1

4
t6∂6 + ∂7.

4. On the Frobenius manifold structures related to the root

system of type Bl and Dl

For the root system R of type Bl, we also define an indefinite metric ( , )
∼

on

Ṽ = V ⊕ R such that Ṽ is the orthogonal direct sum of V and R. V is endowed

with the W -invariant Euclidean metric

(dxs, dxn)
∼

=
1

4π2
[(1− 1

2
δn,l)s−

l

4
δn,lδs,l], 1 ≤ s ≤ n ≤ l (4.1)

and R is endowed with the metric

(dxl+1, dxl+1)
∼

= − 1

4π2dk
. (4.2)
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Here the numbers dk are defined in (2.1) and (2.2). The basis of the Wa-invariant

Fourier polynomials y1(x), . . . , yl−1(x), yl(x) are defined in (2.3)–(2.5). The gen-

erators of the ring W̃ (k)(Bl) have the same form as that of (1.9) and (1.10). It

is easy to see that the components of the resulting metric (gij(y)) coincide with

those corresponding to the root system of type Cl if we perform the change of

coordinates

yj 7→ ȳj = yj, yl 7→ ȳl = (yl)2, yl+1 7→ ȳl+1 = yl+1, j = 1, . . . , l − 1 (4.3)

for 1 ≤ k ≤ l − 1 and

yj 7→ ȳj = yj, yl 7→ ȳl = (yl)2, yl+1 7→ ȳl+1 =
1

2
yl+1, j = 1, . . . , l − 1 (4.4)

for the case when k = l. Thus, the Frobenius manifold structure that we obtain in

this way from Bl, by fixing the k-th vertex of the corresponding Dynkin diagram,

is isomorphic to the one that we obtain from Cl by choosing the k-th vertex of

the Dynkin diagram of Cl.

For the root system R of type Dl, the indefinite metric ( , )
∼

on Ṽ = V ⊕R is

defined through the W -invariant Euclidean metric

(dxs, dxn)
∼

1 =
s

4π2
, 1 ≤ s ≤ n ≤ l − 2,

(dxs, dxn)
∼

=
s

8π2
, 1 ≤ s ≤ l − 2, n = l − 1, l− 2,

(dxl−1, dxl−1)
∼

= (dxl, dxl)
∼

=
l

16π2
, (dxl−1, dxl)

∼

=
l − 2

16π2
,

and

(dxl+1, dxl+1)
∼

= − 1

4π2dk
.

Here the numbers dk are defined in (2.9). The set of generators for the ring

A = A(k)(Dl) have the same form as that of (1.9) and (1.10), where yj(x) are

defined in (2.13) and (2.14). It can be verified that the components of the resulting

metric (gij(y)) coincide with those corresponding to the root system of type Cl if
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we perform the change of coordinates

yj 7→ ȳj = yj, j = 1, · · · , l − 2, l + 1,

yl−1 7→ ȳl−1 = yl−1yl −
l−k∑

s=2

[1− (−1)s] 2s−2yl−s

−
l−k∑

j=0

[1− (−1)j ] 2l−j−2yje(k−j)y
l+1

,

yl 7→ ȳl = (yl)2 + (yl−1)2 −
l−k∑

s=2

[1 + (−1)s] 2s−1yl−s

−
l−k∑

j=0

[1 + (−1)j ] 2l−j−1yje(k−j)y
l+1

.

Thus, the Frobenius manifold structure that we obtain in this way from Dl, by

fixing the k-th vertex of the corresponding Dynkin diagram, is isomorphic to the

one that we obtain from Cl by choosing the k-th vertex of the Dynkin diagram of

Cl.

5. LG superpotentials for the Frobenius manifolds of

Mk,m(Cl)-type

We consider a particular class of cosine-Laurent series of one variable with a

given tri-degree (2k, 2m, 2n), which is a function of the form2

λ(ϕ) =
(
cos2(ϕ)− 1

)−m k+m+n∑

j=0

aj cos
2(k+m−j)(ϕ), a0ak+m+n 6= 0, (5.1)

where all aj ∈ C, m,n ∈ Z≥0 and k ∈ N. The cosine is considered as an an-

alytic function on the cylinder ϕ ≃ ϕ + 2π, so cos2(ϕ) has four critical points

ϕ = 0, π
2
, π, 3π

2
. We denote by Mk,m,n the space of this kind of cosine Laurent

2When k = 1 and m = n = 0, this reduces to λ(ϕ) = a1 + a0 cos
2(ϕ). If we set

cos2(ϕ) =
1 + cos(2ϕ)

2
, a0 = −4e

t2

2 , a1 = t1 + 2e
t2

2 , p = 2ϕ,

then the LG superpotential is rewritten as

λ(p) = t1 − 2e
t2

2 cos(p),

which is exactly the LG superpotential of the CP
1-model obtained in Example I.1 [6].
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series. By analogy with the construction in [6, 1, 21], the space Mk,m,n carries a

natural structure of Frobenius manifold. The invariant inner product η and the

intersection form g of two vectors ∂′, ∂′′ tangent to Mk,m,n at a point λ(ϕ) can be

defined by the following formulae

η(∂′, ∂′′) = (−1)k+1
∑

|λ|<∞
res
dλ=0

∂′(λ(ϕ)dϕ)∂′′(λ(ϕ)dϕ)

dλ(ϕ)
, (5.2)

and

g(∂′, ∂′′) = −
∑

|λ|<∞
res
dλ=0

∂′(log λ(ϕ)dϕ)∂′′(log λ(ϕ)dϕ)

d log λ(ϕ)
. (5.3)

In these formulae, the derivatives ∂′(λ(ϕ)dϕ) etc. are to be calculated keeping ϕ

fixed. The formulae (5.2) and (5.3) uniquely determine multiplication of tangent

vectors on Mk,m,n assuming that the Euler vector field E has the form

E =
k+m+n∑

j=0

aj
∂

∂aj
. (5.4)

For tangent vectors ∂′, ∂′′ and ∂′′′ to Mk,m,n , one has

c(∂′, ∂′′, ∂′′′) = −
∑

|λ|<∞
res
dλ=0

∂′(λ(ϕ)dϕ)∂′′(λ(ϕ)dϕ)∂′′′(λ(ϕ)dϕ)

dλ(ϕ)dϕ
. (5.5)

The canonical coordinates u1, · · · , uk+m+n+1 for this multiplication are the critical

values of λ(ϕ) and

∂uα · ∂uβ = δαβ∂uα , where ∂uα =
∂

∂uα
. (5.6)

For the clarity, we use the notations

λ(P ) = (P 2 − 1)−m
l∑

j=0

ajP
2(k+m−j), l = k +m+ n,

λ̇(P ) =
dλ(P )

dP
, P = cos(ϕ), P ′(ϕ) =

dP

dϕ
= − sin(ϕ) (5.7)

and

λ(ϕ) = a0 (P
2 − 1)−m P−2n

l∏

j=1

(P 2 − p2j ), a0 = e2kiϕl+1, pj = P (ϕj). (5.8)
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Without confusion, we always use λ(P ) instead of λ(ϕ). Before preceding the

main result, we give some useful identities.

Lemma 5.1.

λ′(ϕj) =
2PP ′(ϕ) λ(ϕ)

P 2 − p2j
|ϕ=ϕj

, j = 1, · · · , l. (5.9)

Proof. This follows from

λ′(ϕ) = 2PP ′(ϕ)λ(ϕ)

(
l∑

j=1

1

P 2 − p2j
− m

P 2 − 1
− n

P 2

)

and the definition of λ(ϕ) in (5.8). �

Let us factorize

λ′(ϕ) = 2k a0 (P
2 − 1)−m−1P−2n−1

l+1∏

α=1

(P 2 − q2α)P
′(ϕ), qα = P (ψα), (5.10)

where all q2α are distinct. When m = 0, we choose P ′(ψl+1) = 0, that is to say,

ψl+1 = 0, π, i.e., ql+1 = P (ψl+1) = 1.

Lemma 5.2. For 1 ≤ α ≤ l + 1, we have

λ′′(ψα) =
cα,mPP

′(ϕ) λ′(ϕ)

P 2 − q2α
|ϕ=ψα

, cα,m = 2− δα,l+1δm,0. (5.11)

Proof. By definition, we have

λ′′(ϕ) = 2k a0
d

dϕ

(
(P 2 − 1)−m−1P−2n−1

) l+1∏

α=1

(P 2 − q2α)P
′(ϕ)

+ 2k a0 (P
2 − 1)−m−1P−2n−1 d

dϕ

(
l+1∏

α=1

(P 2 − q2α)

)
P ′(ϕ)

+ 2k a0 (P
2 − 1)−m−1P−2n−1

l+1∏

α=1

(P 2 − q2α)
d2P

d2ϕ

=

l+1∑

α=1

2PP ′(ϕ)λ′(ϕ)

P 2 − p2α
− (2n+ 1)P ′(ϕ)λ′(ϕ)

P
+

(2m+ 1)Pλ′(ϕ)

P ′(ϕ)
.
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So, with the use of (5.10), we get

λ′′(ψα) =

(
l+1∑

α=1

2PP ′(ϕ)λ′(ϕ)

P 2 − p2α
+

(2m+ 1)Pλ′(ϕ)

P ′(ϕ)

)
|ϕ=ψα

=





2PP ′(ϕ) λ′(ϕ)

P 2 − q2α
|ϕ=ψα

, α = 1, · · · , l,

−P λ
′(ϕ)

Pϕ
|ϕ=ψl+1

, α = l + 1, m = 0,

2PP ′(ϕ) λ′(ϕ)

P 2 − q2α
|ϕ=ψl+1

, α = l + 1, m 6= 0

=
cα,mPP

′(ϕ) λ′(ϕ)

P 2 − q2α
|ϕ=ψα

.

Thus the lemma is proved. �

We define

uα = λ(ψα), α = 1, · · · , l + 1,

then

∂uαλ(ϕ)|ϕ=ψβ
= δαβ . (5.12)

Observe that

(P 2 − 1)m+1P 2n−1∂uαλ(P ) = (∂uαa0)P
2l + · · ·+ (∂uαal)

is a polynomial of P and

(P 2 − 1)m+1P 2n−1∂uαλ(P )|P=qβ = (q2β − 1)m+1q2n−1
β δαβ,

we thus obtain, using the Lagrange interpolation formula,

∂uαλ(ϕ) =
cα,mPP

′(ϕ)

P 2 − q2α

λ′(ϕ)

λ′′(ψα)
, α = 1, · · · , l + 1. (5.13)

Lemma 5.3.

∂uαϕβ =





− cα,m pβ P
′(ϕβ)

λ′′(ψα) (p2β − q2α)
, β = 1, · · · , l,

1

2ki

(
δα,l+1

λ(ψα)
+

2 cα,m
λ′′(ψα)

l∑

s=1

p2s P
′(ϕs)

2

(q2l+1 − p2s)(q
2
α − p2s)

)
, β = l + 1.

(5.14)
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Proof. By the definition of λ(ϕ) in (5.8) and using (5.13), we get

cα,mPPϕ

P 2 − q2α

λ′(ϕ)

λ′′(ψα)
= ∂uαλ(ϕ) = 2kiλ(ϕ)∂uαϕl+1−

l∑

s=1

2ps P
′(ϕs)λ(ϕ)

P 2 − p2s
∂uαϕs. (5.15)

Putting ϕ = ϕβ for β = 1, · · · , l into (5.15) and using (5.9), we obtain

∂uαϕβ = − cα,m pβ P
′(ϕβ)

λ′′(ψα) (p2β − q2α)
, β = 1, · · · , l

and furthermore,

∂uαλ(ϕ)

λ(ϕ)
= 2ki∂uαϕl+1 −

l∑

s=1

2ps P
′(ϕs)

P 2 − p2s
∂uαϕs

= 2ki∂uαϕl+1 −
2 cα,m
λ′′(ψα)

l∑

s=1

p2s P
′(ϕs)

2

(P 2 − p2s)(q
2
α − p2s)

. (5.16)

Putting ϕ = ψβ into (5.16), then

δαβ

uβ
= 2ki∂uαϕl+1 −

2 cα,m
λ′′(ψα)

l∑

s=1

p2s P
′(ϕs)

2

(q2β − p2s)(q
2
α − p2s)

.

Especially, taking ϕ = ψl+1, we obtain the desired formula of ∂uαϕl+1. �

Lemma 5.4. For β, γ = 1, · · · , l, we have

Sβ,γ :=

l+1∑

α=1

cα,m uα

λ′′(ψα) (p2β − q2α)(p
2
γ − q2α)

=
δβγ

2 p2β (p
2
β − 1)

. (5.17)

Proof. Letting

λ(z) = (z − 1)−m(a0z
k+m + · · ·+ alz

−n) = a0 (z − 1)−m z−n
l∏

j=1

(z − p2j).

So, λ(ϕ) = λ(z)|z=P 2 and

dλ(z)

dz
= k a0 (z − 1)−m−1z−n−1

l+1∏

α=1

(z − q2α),
λ(z)

z (z − 1)dλ(z)
dz

=

∏l

j=1(z − p2j)∏l+1
α=1(z − q2α)

,

which yields that if q2α 6= 0 (or 1) for all α = 1, · · · , l+ 1, then z = 0 (or 1) is not

a pole of the function
λ(z)

z (z − 1) dλ(z)
dz

.
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With the use of (5.11) and P ′(ϕ)2 = 1− P 2, we rewrite Sβ,γ as

Sβ,γ =

l+1∑

α=1

λ(ϕ) (P 2 − q2α)

P λ′(ϕ)P ′(ϕ) (P 2 − p2β) (P
2 − p2γ)

|ϕ=ψα

= −1

2

l+1∑

α=1

λ(z) (z − q2α)

z (z − 1) dλ(z)
dz

(z − p2β) (z − p2γ)
|z=q2α

= −1

2

l+1∑

α=1

res
z=q2α

λ(z)

z (z − 1) dλ(z)
dz

(z − p2β) (z − p2γ)
|z=q2α

=
1

2
( res
z=∞

+ res
z=p2

β

+ res
z=p2γ

)
λ(z)

dλ(z)
dz

z(z − 1) (z − p2β)(z − p2γ)
dz

=
δβγ

2
res
z=p2

β

λ(z)
dλ(z)
dz

z(z − 1) (z − p2β)
2
dz =

δβγ

2 p2β(p
2
β − 1)

.

We thus prove the identity (5.17). �

Lemma 5.5.

λ′′(ψl+1)

λ(ψl+1)
= −2

(
k +

l∑

s=1

p2s P
′(ϕs)

2

(q2l+1 − p2s)
2

)
. (5.18)

Proof. Observe that

λ′(ϕ) = 2PP ′(ϕ)λ(ϕ)

(
l∑

s=1

1

P 2 − p2s
− m

P 2 − 1
− n

P 2

)
, (5.19)

which yields

P ′(ϕ)

(
l∑

s=1

1

P 2 − p2s
− m

P 2 − 1
− n

P 2

)
|ϕ=ψl+1

= 0. (5.20)

[Case 1. m = 0]. In this case, P ′(ψl+1) = 0. Using (5.19) and (5.20), we have

λ′′(ϕ)

λ(ϕ)
|ϕ=ψl+1

= 2(l − k)−
l∑

s=1

2q2l+1

q2l+1 − p2s
= −2k −

l∑

s=1

2 p2s
q2l+1 − p2s

,

which is exactly the formula (5.18) because of ql+1 = 1 and P ′(ϕs)
2 = 1− q2s .

[Case 2. m 6= 0]. In this case, P ′(ψl+1) 6= 0. By using (5.20),

l∑

s=1

1

q2l+1 − p2s
=

m

q2l+1 − 1
+

n

q2l+1

. (5.21)
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So, using (5.19) and (5.21), we get

λ′′(ϕ)

λ(ϕ)
|ϕ=ψl+1

= 2PP ′(ϕ)
d

dϕ

(
l∑

s=1

1

P 2 − p2j
− m

p2 − 1
− n

p2

)
|ϕ=ψl+1

= −2

(
k +

l∑

s=1

p2s P
′(ϕs)

2

(q2l+1 − p2s)
2

)
.

�

We are now in a position to state our main theorem in this section.

Theorem 5.6. Let

f : (x1, · · · , xl+1) 7→ (ϕ1, · · · , ϕl+1), (5.22)

be a map defined by

ϕj = π(xj − xj−1), x0 = 0, j = 1, · · · , l, ϕl+1 = πxl+1.

Then

(1). the map (5.22) establishes a diffeomorphism of the orbit space of W̃ (k)(Cl)

to the space Mk,m,n. Moreover,

(2). the induced diffeomorphism (5.22) is an isomorphism of Frobenius mani-

folds.

Proof. (1). The first part follows from the explicit formulae for yr and ar, that is,

a0 = eky
l+1

, aj = (−1)j

(
j∑

s=1

2j−s e(k−ds)y
l+1

ys(x) + eky
l+1

)
, j = 1, · · · , l, (5.23)

where ds = s for s = 1, · · · , k and ds = k for s = k + 1, · · · , l.
(2). It is not difficult to check that the Euler vector fields (5.4) and (3.79)

coincide. So it suffices to prove that the intersection form (5.3) coincides with

the intersection form of the orbit space, and the metric (5.2) coincides with the

metric (3.18).
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By definition of η in (5.2) and using (5.13), we get

ηαβ(u) := η(∂uα , ∂uβ) = (−1)k+1
∑

|λ|<∞
res
dλ=0

∂uα(λ(ϕ)dϕ)∂uβ(λ(ϕ)dϕ)

dλ(ϕ)

= (−1)k+1
l+1∑

γ=1

res
ϕ=[ψγ ]

cα,mcβ,mP
2P ′(ϕ)2

(P 2 − q2α)(P
2 − q2β)

λ′(ϕ)

λ′′(ψα)λ′′(ψβ)
dϕ.

We remark that [ψγ ] represents four different points ±ψγ and ±ψγ + π satisfying

q2γ = (ei[ψγ ] + e−i[ψγ ])2. Obviously, when α 6= β, ηαβ(u) = 0. So,

ηαα(u) = (−1)k+1 res
ϕ=[ψα]

c2α,mP
2P ′(ϕ)2

(q2α − P 2)2
λ′(ϕ)

λ′′(ψα)2
dϕ

= (−1)k
2c2α,m
λ′′(ψα)2

res
P=±qα

P 2

P 2 − q2α

λ̇(P )(P 2 − 1)

P 2 − q2α
dP

= (−1)k
2 c2α,m
λ′′(ψα)2

res
P=±qα

P 2

P 2 − q2α

λ̇(P )(P 2 − 1)

P 2 − q2α
dP

= (−1)k+1 2 cα,m
λ′′(ψα)

.

We thus obtain

ηαβ(u) = (−1)k+12 cα,mδαβ
λ′′(ψα)

.

Similarly, we can obtain the formula of gαβ(u) := g(∂uα, ∂uβ) as

gαβ(u) = − 2 cα,mδαβ
uαλ′′(ψα)

.

Observe that the vector field e =

l∑

j=k

cj
∂

∂yj
in (3.20) in the coordinates a1, · · · , al+1

coincides with e = (−1)k
m∑

s=0

(−1)m−s
(
m

s

)
∂

∂ak+m−s
. The shifting

ak+m−s 7−→ ak+m−s + c (−1)m−s
(
m

s

)
, s = 0, · · · , m,

produces the corresponding shift

uα 7−→ uα + c, α = 1, · · · , l + 1
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of the critical values. This shift does not change the critical points ψα neither the

values of the second derivative λ′′(ψα). So

Legαβ = Le(−
uαλ

′′(ψα)

2 cα,mδαβ
) = (−1)k+1 λ′′(ψα)

2 cα,mδαβ
= ηαβ. (5.24)

Finally, we want to compute the metric gβγ(ϕ) given by

gβγ(ϕ) : = (dϕβ, dϕγ) =
l+1∑

α,κ=1

1

gακ(u)

∂ϕβ

∂uα

∂ϕγ

∂uκ
=

l+1∑

α=1

1

gαα(u)
∂uαϕβ ∂uαϕγ.

Using (5.14), (5.17) and (5.18), we have

Case 1. 1 ≤ β, γ ≤ l.

gβγ(ϕ) = −pβ pγ P
′(ϕβ)P

′(ϕγ)

2

l+1∑

α=1

cα,m uα

λ′′(ψα) (p
2
β − q2α)(p

2
γ − q2α)

=
1

4
δβγ .

Case 2. 1 ≤ β ≤ l and γ = l + 1.

gβ,l+1(ϕ) =
pβ P

′(ϕβ)

4ki

l+1∑

α=1

1

p2β − q2α

(
δα,l+1 +

2 cα,m uα
λ′′(ψα)

l∑

s=1

p2s P
′(ϕs)

2

(q2l+1 − p2s)(q
2
α − p2s)

)

=
pβ P

′(ϕβ)

4ki

(
1

p2β − q2l+1

−
l∑

s=1

p2s P
′(ϕs)

2

q2l+1 − p2s

l+1∑

α=1

2 cα,m uα
λ′′(ψα)(q2α − p2s)(q

2
α − p2β)

)

= 0.
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Case 3. β = γ = l + 1.

gl+1,l+1(ϕ) =

l+1∑

α=1

uα λ
′′(ψα)

8k2 cα,m

(
δα,l+1

λ(ψα)
+

2 cα,m
λ′′(ψα)

l∑

s=1

p2s P
′(ϕs)

2

(q2l+1 − p2s)(q
2
α − p2s)

)2

=
1

8k2
λ′′(ψl+1)

λ(ψl+1)
+

1

2k2

l∑

s=1

p2s P
′(ϕs)

2

(q2l+1 − p2s)
2

+
1

2k2

l∑

s,j=1

p2s p
2
j P

′(ϕs)
2 P ′(ϕj)

2

(q2l+1 − p2s) (q
2
l+1 − p2j)

l+1∑

α=1

cα,m uα

λ′′(ψα)(q2α − p2s)(q
2
α − p2j)

= − 1

4k2

(
k +

l∑

s=1

p2s P
′(ϕs)

2

(q2l+1 − p2s)
2

)
+

1

2k2

l∑

s=1

p2s P
′(ϕs)

2

(q2l+1 − p2s)
2

+
1

4k2

l∑

s,j=1

p2s p
2
j P

′(ϕs)
2 P ′(ϕj)

2

(q2l+1 − p2s) (q
2
l+1 − p2j)

δsj

p2j (p
2
j − q2l+1)

= − 1

4k
.

Using the isomorphism (5.22), it is easy to know that the intersection form gαβ(ϕ)

coincides with ( , )
∼

defined in (3.1) and (3.2). The coincidence of the metric

(5.2) with the metric (3.18) follows (5.24). We thus complete the proof of the

theorem. �

Remark 5.7. (1). When m = 0, Mk,0,n ≃ Mk,0(Cl), which is the Frobenius

manifold structure constructed in arXiv:052365v1 ([11]).

(2). On the orbit space of the extended affined Weyl group W̃ (k)(Dk+2), Dubrovin

and Zhang constructed a weighted homogenous polynomial Frobenius structure, de-

noted by M(k)
DZ(Dk+2) which is isomorphic to Mk,1,1. Actually, in this case, there

is a tri-polynomial description introduced in [17, 19], also used in [10].

6. Concluding Remarks

For the root systems of type Bl, Cl and Dl, we have constructed families of

Frobenius manifold structures on the orbit spaces of the extended affine Weyl

groups W̃ (k)(R) with respect to the choice of an arbitrary vertex on the Dynkin

diagram, as it was suggested in [18] motivated by the results of [20, 13, 14].
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It remains a challenging problem to understand whether the constructions of

the present paper can be generalized to the root systems of the types E6, E7, E8,

F4, G2. Another open problem is to obtain an explicit realization of the integrable

hierarchies associated with the Frobenius manifolds of the type W̃ (k)(R). So far

this problem was solved only for R = Al, see [3, 4, 8, 9, 15, 16] for details. We

plan to study these problems in subsequent publications.

To end up this section, we remark that the potential of the semisimple Frobenius

manifold structures constructed above from the root systems of type (Cl, k,m = 0)

has the form

F =
1

2
(tk)2tl+1 +

1

2
tk
∑

α,β 6=k
ηαβt

αtβ +
n∑

j=0

fj(t
2, t3, . . . , tl,

1

tl
) ej t

l+1

,

where fj(t
2, t3, . . . , tl, 1

tl
), j = 0, . . . , n are some polynomials of their independent

variables. The Euler vector field has the form

E =
l∑

j=1

dj
∂

∂tj
+ r

∂

∂tl+1
.

Here 0 < dj < 1, r > 0, they also satisfy the duality relation given in (3.68), (3.69)

for the case m = 0. We expect that these potentials of semisimple Frobenius

manifolds together with the ones that are constructed in [7] exhaust all solutions

of the above form, and we have verified this for the cases when l = 1, 2, 3 and

n ≤ 6.
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